
MAT 67: PROBLEM SET 3

DUE TO FRIDAY MAY 10 2024

Abstract. Solutions were typed by TA Scroggin, please contact tmscroggin – at –
ucdavis.edu for any comments.

Purpose: The goal of this assignment is to acquire the necessary skills to work with
linear maps, bases and matrices. These were discussed during the fifth week of the
course and are covered in Chapter 6 and Appendix A of the textbook.

Task: Solve Problems 1 through 4 below.

Instructions: It is perfectly good to consult with other students and collaborate when
working on the problems. However, you should write the solutions on your own, using
your own words and thought process. List any collaborators in the upper-left corner
of the first page.

You are welcome to use the Office Hours offered by the Professor and the TA. Again,
list any collaborators or contributors in your solutions. Make sure you are using your
own thought process and words, even if an idea or solution came from elsewhere. (In
particular, it might be wrong, so please make sure to think about it yourself.)

Grade: Each graded Problem is worth 25 points, the total grade of the Problem Set
is the sum of the number of points. The maximum possible grade is 100 points.

Writing: Solutions should be presented in a balanced form, combining words and
sentences which explain the line of reasoning, and also precise mathematical expres-
sions, formulas and references justifying the steps you are taking are correct. If you
are using theorems in lecture and in the textbook, make that reference clear. (E.g.
specify name/number of the theorem and section of the book.)
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Problem 1. Let V = W = R3 and let f : V → W be a linear map. Consider the
basis {v1, v2, v3} and {w1, w2, w3}, where

v1 = (1, 0,−2), v2 = (3, 4, 0), v3 = (1,−1, 2),

w1 = (1, 0, 1), w2 = (1, 1, 1), w3 = (0, 0, 1).

Suppose that f(vi) = wi for 1 ≤ i ≤ 3.

(1) Find the vectors f(5, 3, 0), f(5, 9,−2) and f(1, 0, 0).

(2) Find the numbers aij ∈ R such that

f(x1, x2, x3) = (a11x1 + a12x2 + a13x3, a21x1 + a22x2 + a23x3, a31x1 + a32x2 + a33x3).

Solution.

(1) We use the linearity of f to determine the values of the vectors. Since we are
given the where the basis vectors vi map under f , we write the vectors as a
linear combination of the basis vectors vi. We find that

(5, 3, 0) = 1 · (1, 0,−2) + 1 · (3, 4, 0) + 1 · (1,−1, 2)

(5, 9,−2) = 0 · (1, 0,−2) + 2 · (3, 4, 0)− 1 · (1,−1, 2)

(1, 0, 0) =
4

11
· (1, 0,−2) +

1

11
· (3, 4, 0) + 4

11
· (1,−1, 2)

Using the linearity of f , we find that

f(5, 3, 0) = 1 · f(1, 0,−2) + 1 · f(3, 4, 0) + 1 · f(1,−1, 2)

= 1 · (1, 0, 1) + 1 · (1, 1, 1) + 1 · (0, 0, 1)

= (2, 1, 3) ,

f(5, 9,−2) = 0 · f(1, 0,−2) + 2 · f(3, 4, 0)− 1 · f(1,−1, 2)

= 0 · (1, 0, 1) + 2 · (1, 1, 1)− 1 · (0, 0, 1)

= (2, 2, 1) ,

f(1, 0, 0) =
4

11
· f(1, 0,−2) +

1

11
· f(3, 4, 0) + 4

11
· f(1,−1, 2)

=
4

11
· (1, 0, 1) + 1

11
· (1, 1, 1) + 4

11
· (0, 0, 1)

=

(
5

11
,
1

11
,
9

11

)
.
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(2) We use the values of the vectors in part (1) to find the numbers aij ∈ R. We
see that

f(5, 3, 0) = (5a11 + 3a12x2, 5a21 + 3a22, 5a31 + 3a32) = (2, 1, 3)

f(5, 9,−2) = (5a11 + 9a12 − 2a13, 5a21 + 9a22 − 2a23, 5a31 + 9a32 − 2a33) = (2, 2, 1)

f(1, 0, 0) = (a11, a21, a31) =

(
5

11
,
1

11
,
9

11

)
Which allows us to write three systems of equations

5a11 + 3a12x2 = 2

5a11 + 9a12 − 2a13 = 2

a11 =
5
11


5a21 + 3a22 = 1

5a21 + 9a22 − 2a23 = 2

a21 =
1
11


5a31 + 3a32 = 3

5a31 + 9a32 − 2a33 = 1

a31 =
9
11

Using your favorite method to solve the systems of equations we find that

a11 =
5

11
, a12 = − 1

11
, a13 = − 3

11
, a21 =

1

11
, a22 =

2

11
,

a23 =
1

22
, a31 =

9

11
, a32 = − 4

11
, a33 = − 1

11
.

Therefore, the matrix for f with the given basis is

Af =

5/11 −1/11 −3/11
1/11 2/11 1/22
9/11 −4/11 −1/11


□

Problem 2. Consider V = R3,W = R2, Z = R2 and the following two linear maps
f : R3 → R2 and g : R3 → R2:

f(x1, x2, x3) =

 1 2 −1
0 5 −5
−4 3 −7

x1

x2

x3

 , g(y1, y2, y3) =

(
1 0 3
5 6 0

)y1
y2
y3


Each item is worth 5 points. Solve the following parts:

(1) Compute f(1, 3,−1) and g(2, 5, 0).

(2) Find a matrix expression for the composition g ◦ f : R3 → R2.

(3) Find bases for the nullspaces ker(f), ker(g) and ker(g ◦ f).

(4) Find bases for the ranges im(f), im(g) and im(g ◦ f).

Solution.

(1)

f(1, 3,−1) =

 1 2 −1
0 5 −5
−4 3 −7

 1
3
−1

 =

 8
20
12

 ,
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g(2, 5, 0) =

(
1 0 3
5 6 0

)2
5
0

 =

(
2
40

)
.

(2)

g ◦ f =

(
1 0 3
5 6 0

) 1 2 −1
0 5 −5
−4 3 −7

 =

(
−11 11 −22
5 40 −35

)
.

(3) To find the bases for ker(f), we solve the system of equations associated to 1 2 −1
0 5 −5
−4 3 −7

x1

x2

x3

 =

0
0
0

 .

Here, we get the three equations
x1 + 2x2 − x3 = 0

5x2 − 5x3 = 0

−4x1 + 3x2 − 7x3 = 0

.

We see that x3 = x2 from equation (2), which allows us to solve for x = −x2 in

equation (1) and by equation (3) we solve for x2 = 0. Therefore, ker(f) = {0} .

To solve for the bases of ker(g), we solve the systems of equations(
1 0 3
5 6 0

)y1
y2
y3

 =

(
0
0

)
.

Which is equivalent to {
y1 + 3y3 = 0

5y1 + 6y2 = 0

From equation (1) we see that y3 = −1
3
y1 and from equation (2) we see that

y2 = −5
6
y1. So all vectors in ker g are of the form(

y1,−
5

6
y1,−

1

3
y1

)
∼ (6y1,−5y1,−2y1)

by clearing the fractions. Therefore, a basis for ker g is (6,−5,−2), i.e., ker g = span(6,−5,−2) .

Finally we find the basis for ker g ◦ f by solving the system of equations
associated to (

−11 11 −22
5 40 −35

)x1

x2

x3

 =

(
0
0

)
.

Which is the system of equations{
−11x1 + 11x2 − 22x3 = 0

5x1 + 40x2 − 35x3 = 0
=⇒

{
−x1 + x2 − 2x3 = 0

x1 + 8x2 − 7x3 = 0
.
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We solve for x1 in both equations and set them equal to each other and find
that x2 − 2x3 = −8x2 + 7x3, then x2 = x3. Therefore, x1 = x3 − 2x3 = −x3, so

ker g ◦ f = span(−1, 1, 1).

(4) Here, we may look at the column vectors of the matrices and determine which of
the column vectors are linearly independent. For f , we have that (−1,−5,−7) =

(1, 0,−4)− (2, 5, 3), so Imf = span{(1, 0,−4), (2, 5, 3)} .

For g, we see that (1, 5) = 1
3
(3, 0)+ 1

6
(0, 6), so Img = span{(3, 0), (0, 6)} . And

for g◦f , we see that (−22,−35) = (−11, 5)−(11, 40), so Img ◦ f = span{(−11, 5), (11, 40)} .

□

Problem 3. From the textbook. Solve the Exercises (1), (2) and (6) in Page 86 (End
of Chapter 6). The first two count 8 points and the last one 9 points.

(1) Define the map T : R2 → R2 by T (x, y) = (x+ y, x).
(a) Show that T is linear.
(b) Show that T is surjective.
(c) Find dim(null(T )).
(d) Find the matrix for T with respect to the canonical basis of R2.
(e) Find the matrix for T with respect to the canonical basis for the domain

R2 and the basis ((1, 1), (1,−1)) for the target space R2.
(f) Show that the map F : R2 → R2 given by F (x, y) = (x + y, x + 1) is not

linear.

Solution. (a) This is a straightforward check:

T (x+ x′, y + y′) = (x+ x′ + y + y′, x+ x′) = (x+ y, x) + (x′ + y′, x′)

= T (x, y) + T (x′ + y′, x′),

T (c · (x, y)) = T (c · x, c · y) = (c · x+ c · y, c · x) = c · (x+ y, x)

= c · T (x, y).
(b) The map T (x, y) = (x + y, x) = (x, x) + (y, 0), since {(1, 1), (1, 0)} are

linearly independent, then the image of the map is the span((1, 1), (1, 0)).
Therefore, the image of T is R2 and the map is surjective.

Alternatively, from previous methods, let x = b, y = a − b, then for all
(a, b) ∈ R2 there exists an (x, y) ∈ R2 such that f(x, y) = (a, b), i.e., T is
surjective.

(c) We want to find all (x, y) ∈ R2 such that T (x, y) = (x + y, x) = (0, 0).
Solving for x, y we see that y = −x and x = 0, therefore, kerT = {0} and
dimkerT = 0.

(d) The canonical basis for R2 is given by e1 = (1, 0), e2 = (0, 1). The matrix
of T is given by T (e1), T (e2) written as column vectors. We see that
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T (e1) = (1, 1) and T (e2) = (1, 0), so the matrix for T with respect to the
canonical basis of R2 is given by(

1 1
1 0

)
.

(e) First, we compute the canonical basis vectors under the map T and then
express these vectors in terms of the target basis ((1, 1), (1,−1)).

T (1, 0) = (1, 1) = 1 · (1, 1) + 0 · (1,−1) = a11(1, 1) + a21(1,−1)

T (0, 1) = (1, 0) =
1

2
· (1, 1) + 1

2
· (1,−1) = a12(1, 1) + a22(1,−1)

Therefore, the matrix T is given by(
1 1/2
0 1/2

)
.

(f) We can clearly see that the map F is not linear since

F (x+x′, y+y′) = (x+x′+y+y′, x+x′+1) ̸= (x+y, x+1)+(x′+y′, x′+1) = F (x, y)+F (x′, y′).

□

(2) Let T ∈ L(R2) be defined by

T

(
x
y

)
=

(
y
−x

)
, for all

(
x
y

)
∈ R2

(a) Show that T is surjective.
(b) Find dim(null(T )).
(c) Find the matrix for T with respect to the canonical basis of R2.
(d) Show that the map F : R2 → R2 given by F (x, y) = (x + y, x + 1) is not

linear.

Solution. (a) The map T (x, y) = (y,−x) = (y, 0)+(0,−x). Since {(1, 0), (0,−1)}
are linearly independent, then the image of the map is span((1, 0), (0,−1)) =
R2, so T is a surjective map.

Alternatively, let x = −b, y = a, then for all (a, b) ∈ R2 there exists an
(x, y) ∈ R2 such that T (x, y) = (a, b).

(b) We want to find all (x, y) ∈ R2 such that T (x, y) = (0, 0). Then x = y = 0

and kerT = {0}, so dim(null(T )) = 0 .

(c) We see that T (e1) = T (1, 0) = (0,−1) and T (e2) = T (0, 1) = (1, 0), so the
matrix for T is given by (

0 1
−1 0

)
.

(d) We can plainly see that the map F is not linear since for c ̸= 1

c · F (x, y) = (cx+ cy, cx+ c) ̸= (cx+ cy, cx+ 1) = F (c · (x, y)).
□
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(3) Show that no linear map T : F5 → F2 can have as its null space the set

{(x1, x2, x3, x4, x5) ∈ F5|x1 = 3x2, x3 = x4 = x5}.
Proof. By the dimension formula we see that

dimR5 = dimkerT + dim ImT

Since the dimension of the codomain F2 is 2 dimensional, then 0 ≤ dim ImT ≤ 2
which implies that 3 ≤ dimkerT ≤ 5. However, the subset is defined

{(3x2, x2, x3, x3, x3) ∈ F5 : x2, x3 ∈ F}
and is only 2-dimensional; therefore, the subset cannot be defined as the kernel
for the map T since 2 < 3.

□

Problem 4. From the textbook. Solve the Proof-Writing Exercises (1), (2), (4) and
(7) in Page 83 (End of Chapter 6). The first three count 7 points and the last one 4
points

(1) Let V and W be vector spaces over F with V finite-dimensional, and let U be
any subspace of V . Given a linear map S ∈ L(U,W ), prove that there exists
a linear map T ∈ L(V,W ) such that, for every u ∈ U , S(u) = T (u).

Proof. Let U be a subspace of V and let V = span(v1, . . . , vk, . . . , vn) and
U = span(v1, . . . , vk). We define the map T ∈ L(V,W ) using the basis vectors
of V , then

T (vi) =

{
S(vi) if 1 ≤ i ≤ k

0 if k + 1 ≤ i ≤ n

Under this map we see that for any vector u ∈ U expressed as u = a1v1 + · · ·+
akvk that

T (u) = T (a1v1 + · · ·+ akvk) = a1T (v1) + · · ·+ akT (vk)

= a1S(v1) + · · ·+ akS(vk) = S(a1v1 + · · ·+ akvk)

= S(u)

Therefore, given a linear map S ∈ U ,W there exists a linear map T ∈ L(V,W )
where T (u) = S(U) for every u ∈ U . □

(2) Let V and W be vector spaces over F, and suppose that T ∈ L(V,W ) is
injective. Given a linearly independent list (v1, . . . , vn) of vectors in V , prove
that the list (T (v1), . . . , T (vn)) is linearly independent in W .

Proof. Suppose (v1, . . . , vn) is a set linearly independent vectors in V , then the
only solution to

a1v1 + · · ·+ anvn = 0

is the trivial solution where ai = 0 for all 1 ≤ i ≤ n. Since T ∈ L(V,W ) is an
injective linear map then kerT = {0}, i.e., if T (v) = 0 then v = 0. Let v ∈ V
where v = a1v1 + · · ·+ anvn = 0, then by the linearity of T we see that

0 = T (v) = T (a1v1 + · · ·+ anvn)

= a1T (v1) + · · ·+ anT (vn)

Here ai = 0 for all 1 ≤ i ≤ n as above, therefore, (T (v1), . . . , T (vn)) is a linearly
independent set of vectors in W . □
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(3) Let V and W be vector spaces over F, and suppose that T ∈ L(V,W ) is
surjective. Given a spanning list (v1, . . . , vn) for V , prove that

span(T (v1), . . . , T (vn)) = W.

Proof. We want to show that for any vector w ∈ W that we may write

w = a1T (v1) + · · ·+ anT (Vn).

We are given that T ∈ L(V,W ) is surjective, therefore, for all w ∈ W there
exists a v ∈ V where T (v) = w. Since (v1, . . . , vn) is a spanning set of V then
we may write any vector v ∈ V as

v = a1v1 + · · ·+ anvn.

By the linearity of T we find that

w = T (v) = T (a1v1 + · · ·+ anvn)

= a1T (v1) + · · ·+ anT (vn).

Therefore, any w ∈ W can be expressed as a linear combination of (T (v1), . . . , T (vn)),
i.e., span(T (v1), . . . , T (vn)) = W . □

(4) Let U , V , and W be finite-dimensional vector spaces over F with S ∈ L(U, V )
and T ∈ L(V,W ). Prove that dim(null(T ◦S)) ≤ dim(null(T ))+dim(null(S)).

Proof. I will use a minor change of notation, I will use ker instead of null, and
F (X) to denote the image of set X under some arbitrary map F instead of
ImF which was used in discussion.

The maps are represented by the picture:

U V WS

T◦S

T

As a quick note, if u ∈ U is an element in ker(T ◦ S), i.e., (T ◦ S)(u) = 0, then
either S(u) = 0 (u ∈ kerS), or S(u) ̸= 0 and T (S(u)) = 0 (S(u) ∈ kerT ).

Since kerT ◦ S ⊆ U , then

dimkerT ◦ S ≤ dimU = dimkerS + dimS(U).

Also, since S(U) ⊆ V , then

dimS(U) ≤ dimV = dimkerT + dimT (V ).

By combining these inequalities, we see that

dimkerT ◦ S ≤ dimkerS + dimkerT + dimT (V ).

Now, we want to show that we can remove the additional term dimT (V ) in
the inequality. Since kerT ◦ S ⊆ U we may restrict the map S to the subspace
kerT ◦ S, which provides an additional dimension formula

dim(kerT ◦ S) = dimkerS + dimS(kerT ◦ S)
Given that S(kerT ◦ S) ⊆ V , i.e., we can apply the map T to the subspace
S(kerT ◦ S), then

dimS(kerT ◦ S) ≤ dimkerT + dimT (S(kerT ◦ S))
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Finally, we combine the last two inequalities to get

dim(kerT ◦ S) ≤ dimkerS + dimkerT + dimT (S(kerT ◦ S)).
Note that T (S(kerT ◦ S)) = 0 by definition, so dimT (S(kerT ◦ S)) = 0.
Therefore,

dim(kerT ◦ S) ≤ dimkerS + dimkerT.

□


