
SOLUTIONS TO PROBLEM SET 1

MAT 141

Abstract. These are the solutions to Problem Set 2 for the Euclidean and Non-
Euclidean Geometry Course in the Winter Quarter 2020. The problems were posted
online on Friday Jan 17 and due Friday Jan 24 at 10:00am.

Problem 1. Let f : R2 −→ R2 be an isometry and A,B,C ∈ R2 three non-collinear
points. Suppose that f(A) 6= A, f(B) 6= B and f(C) 6= C. Show that f is the product
of one, two or three reflections.

Comment: This is one of the cases of our Classification Theorem for Isometries of the
Euclidean Plane. Thus, you are not allowed to use the Theorem.

Solution.

First, perform the reflection ra in the line of points equidistant from A and f(A). Then
ra(A) = f(A). If ra = f , then f is a reflection, and we are done. Otherwise, without
loss of generality, ra(B) 6= f(B). So perform the reflection rb in the line of points
equidistant from ra(B) and f(B), which exchanges these points. Since

d(f(A), ra(B)) = d(ra(A), ra(B)) = d(f(A), f(B)),

we see that f(A) is equidistant from ra(B) and f(B), so it is fixed by rb. Therefore,
we have rbra(A) = f(A), and rbra(B) = f(B). If rbra = f , then f is the product of
two reflections, and we are done. Otherwise rbra(C) 6= C, so perform the reflection rc
in the line of points equidistant from rbra(C) and f(C), exchanging these points. We
have

d(f(A), rbra(C)) = d(rbra(A), rbra(C)) = d(f(A), f(C)),

so f(A) is equidistant from rbra(C) and f(C), and hence fixed by rc. The same
is true for f(B). We conclude that rcrbra(A) = f(A), rcrbra(B) = f(B), and
rcrbra(C) = f(C), so rcrbra = f , and f is the product of three reflections.

Problem 2. Given an isometry f : R2 −→ R2, an invariant line l ⊆ R2 is a line that
gets mapped by f onto itself, i.e. f(L) = L. Note that this does not mean that the
points p ∈ L are fixed.

(a) Use the Classification Theorem of Isometries in the Euclidean Plane to show
that an isometry f : R2 −→ R2 has exactly one of the following:

(i) A line of fixed points,

(ii) A single fixed point,

(iii) No fixed points, and a parallel family of invariant lines,

(iv) No fixed points, and a single invariant line.
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Remark: In particular, it is possible to define points and lines starting from the
group of isometries itself. This is beginning of the Erlangen program, a theory
initiated by F. Klein in 1872, whose tenet is the development of geometries in
terms of their isometries.

(b) In each of the four cases in Part 2.(a), describe the isometry f as a product of
one, two or three reflections along lines.

Hint: you shall need to describe the relative position of these lines.

Solution.

(a) It is clear that f cannot have more than one of these properties, so we only
need to show that it has one of them. The Classification Theorem of Isometries
in the Euclidean Plane says that f is either a rotation, a translation, or a glide
reflection. If we dispense with the possibility that f is the identity (so f has
property (i)), then these three types of isometries are disjoint (because glide
reflections reverse orientation while the others don’t, and rotations preserve one
point while translations don’t).

If f is a rotation, say about the point P , then it fixes only the point P , so f
has property (ii).

If f is a translation, then it has no fixed points. In this case, say f = tα,β.
Then, for any c ∈ R, the line Lc defined by αy − βx = c is invariant under f .
The family

{Lc | c ∈ R}
is then an infinite family of parallel invariant lines, so f has property (iii).

Finally, suppose f is a glide reflection. If f is a pure reflection, then it fixes
the line in which it reflects, so f has property (i). Otherwise, f = tP rL for
some P 6= O such that the segment PO is parallel to the line L (you hop over a
river and then follow the river). Consider first the reflection rL. All points on a
given side of rL have been flipped to the other side. Performing the translation
tP keeps them on this new side, since they only move parallel to L. Therefore,
f does not fix any points not in L. Nor does f fix any points in L, because
such points are fixed by rL and then moved downstream by tP 6= Id. However,
this observation shows that L is an invariant line under f .

We lastly show that f has no other invariant lines. Suppose M is a line distinct
from L. If M crosses L, then rL changes the slope of M , and the subsequent
translation leaves that new slope unchanged, so M cannot be invariant under
f . If M is parallel to L, then it is totally contained on one side of L, and f
moves M to the other side, so it again is not invariant. We conclude that f has
property (iv).

(b) In case (i), f is a single reflection or the identity (which is the product of two
instances of the reflection through any single line).

In case (ii), f is a rotation Rθ,P for some θ 6= 0. Then f = rMrL, where M and
L are any two lines which meet at P and have angle θ/2 from L to M .



SOLUTIONS TO PROBLEM SET 1 3

In case (iii), f is a translation tP for P 6= O. Then f = rMrL where M and L
are any two parallel lines perpendicular to the segment PO and separated by
a distance ‖P‖ /2 from L to M .

In case (iv), f is a glide reflection tP rN , where P 6= O and the line L is parallel
to the segment PO. Then tP = rMrL can be deconstructed as above, so we
have f = rMrLrN . Here N is known from the original decomposition, and M
and L are any lines perpendicular to L such that M is a distance‖P‖ /2 from L.

Problem 3. (20 pts) (Glide reflections) A glide reflection is an plane isometry
f : R2 −→ R2 of the form t(α,β) ◦ rL with the translation vector (α, β) ∈ R2 parallel to
the reflection line L.

(a) Let t(α,β) ◦ rL be a glide reflection. Show that t(α,β) ◦ rL = rL ◦ t(α,β).

(b) Give an example of a point (γ, δ) ∈ R2 and a line M ⊆ R2 such that

t(γ,δ) ◦ rM 6= rM ◦ t(γ,δ).

(c) Let (α, β) ∈ R2 and L ⊆ R2 a line. Suppose that

t(α,β) ◦ rL = rL ◦ t(α,β).

Show that (α, β) ∈ R2 parallel to L.

Note: Thus, glide reflections can also be defined as those compositions of a re-
flection and a translation which commute.

(d) Consider the rectangular box B = {(x, y) ∈ R2 : −1 ≤ x ≤ 1, 2 ≤ y ≤ 4} ⊆ R2,
and let f = t(4,0) ◦ r be a glide reflection. Draw the five set

B, f(B), f 2(B), f 3(B), f 4(B), f 5(B),

defined by the iterated images of the box B under the isometry f .

(e) Let L,M,N ⊆ R2 be three lines. Show that a product rNrMrL of three reflec-
tion is a glide reflection.

Hint: It might be helpful to study the different cases depending on the relative
positions of the lines L,M,N ⊆ R2.

Solution.

(a) By performing a suitable isometry, we may assume that L is the x-axis, which
means β = 0. We calculate

tα,0 ◦ r(x, y) = tα,0(x,−y) = tα,0(x+ α,−y),

and

r ◦ tα,0(x, y) = r(x+ α, y) = (x+ α,−y),

so these isometries agree.
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Remark: The key point is that each of t(α,0) and r operated on only one of the
coordinates, so they had no interaction. For a general glide isometry, we have
the same phenomenon, where the two functions operate in perpendicular direc-
tions, and thus have no interaction. This can best be seen by breaking (x, y)
into its components along a basis in these perpendicular directions, which is
essentially changing coordinates, as in the “suitable isometry” referenced above.

(b) If M and (γ, δ) are not parallel, then these maps will not not commute, because
they won’t be acting in perpendicular directions. The extreme case occurs when
M and (γ, δ) are perpendicular, so the actions of t(γ,δ) and rM are parallel. Take
M to be the x-axis, and set (γ, δ) = (0, 1). Then

t(0,1) ◦ rM(x, y) = t(0,1)(x,−y) = (x,−y + 1),

but
rM ◦ t(0,1)(x, y) = rM(x, y + 1) = (x,−y − 1).

so these two isometries don’t agree.

(c) By a suitable isometry, we may assume that L is the x-axis. Then we have

t(α,β) ◦ r(x, y) = (x+ α,−y + β),

and
r ◦ t(α,β)(x, y) = (x+ α,−y − β).

Since these two maps are the same, we conclude that −y + β = −y − β for all
y ∈ R, so β = 0. Therefore, (α, β) = (α, 0) is parallel to the x-axis.

(d) Shown below are the box B and its five iterated glides, each to the right of the
previous.

(e) In the Theorem on pp. 12-13 of Stillwell, most cases are considered. You should
make sure you understand them and can present them in your own argument.
Here are the remaining cases.

Suppose L and M intersect in a point not on N . If M and N intersect, then
they do so at a point not on L, so Case (ii) in the Theorem applies. Similarly,
if L and N intersect in a point not on N , but N and M intersect, then Case
(ii) applies again.
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The only remaining case is when L is a transversal intersecting parallel lines M
and N . Suppose L intersects M at P . Since rMrL is a rotation, we may rotate
lines M and L about P as a pair, making the replacement rMrL = rM ′rL′ , where
M ′ and L′ are any two lines intersecting at P , retaining the angle between M
and L, but distinct from M and L. Now we no longer have parallel lines, and
Case (ii) applies once again.

Remark: The key is always to find new lines Ñ , M̃ , and L̃, with M̃ and Ñ

perpendicular to L̃, and such that rNrMrL = rÑrM̃rL̃. By the arguments in
the theorem, this will always be a glide reflection.

Problem 4. (20 pts) The goal of this exercise is to complete the following table:

Reflection rL Translation t(α,β) Rotation Rθ,P Glide reflection
Reflection rM .
Translation t(γ,δ)
Rotation Rφ,Q

Glide Reflection

The table is completed as follows. At a given entry, we want to describe the type of
isometry g ◦ f : R2 −→ R2 which is obtained by composing an isometry f : R2 −→ R2

of the type indicated by its row with an isometry g : R2 −→ R2 of the type indicated
by its column. There are a total of four types: reflections, translations, rotations and
glide-reflections. There can be more than one type per entry.

In general, we will include reflections rL within the set of glide reflections. Just for
the purpose of this problem, glide reflection refers to a glide reflection which is not a
reflection.

(a) Show that rMrL is either a rotation or a translation. What is the geometric
position between M and L if rMrL is a translation ?

(b) Show that the composition of a glide reflection with a reflection is a rotation
or a translation.

(c) Complete the table above.

(d) The order in which we compose isometries can matter. Show that a rotation
and a reflection do not necessarily commute.

(e) Discuss whether glide-reflections commute with reflections, translations and ro-
tations.

Solution. Let us ignore the identity function, so that our four categories are disjoint
(remember that the identity is technically a translation and a rotation.



6 MAT 141

(a) It has been discussed (and proven in Stillwell) that rMrL is a translation ex-
actly when M and L are parallel, and a rotation otherwise.

(b) Consider a glide rMrNrL, where M and N are perpendicular to L. Compos-
ing on the left with rM gives a rotation. From Problem 3(c), we know that
rMrNrL = rLrMrN is the same glide. Composing on the left with rL gives a
translation. These are all the possibilities for this composition. Similarly, com-
posing rMrNrL on the right by rL gives a translation, and composing rLrMrN
on the right by rN gives a rotation. So glides compose with reflections to give
either kind of orientation-preserving isometry.

(c) We will use the classification from Problem 6(d) and (e) below, that parity must
be respected. That is, rotations and translations can only combine among them-
selves, reflections and glides must combine to form rotations and translations,
and mixing parity must result in a reflection or glide.

From part (a), we have the upper left entry. From Problem Set 1, Problem
4(c), we know the second diagonal entry. Problem 6(b) below shows that the
composition of rotations may be a translation, and we also know that it may
be a rotation.

Composing a translation after a reflection may be a glide, and the reverse order
may be too. From the characterization of glides in Problem 3(b) and (c), we
know there must be compositions of reflections and translations that are not
glides, so they must be reflections.

From the proof of Problem 6(d), we know that the composition of a rotation
and a translation, in either order, is a rotation.

Consider a rotation R followed by a reflection rL. By rotating the reflecting
lines used to create the rotation R, we can assume that the second is parallel
with L. Therefore, this composition is a reflection (the first line used in R) and
a translation (the second and third). Depending on whether this first line is
perpendicular to L or not, we can get a glide or a reflection. The reverse order
shows the same result.

Finally, we consider the compositions with glides not covered in part (b). A
glide can be thought of as ending or beginning with a translation, so the fol-
lowing result applies to composition on both sides. Compose a glide with a
translation in its same direction. If that translation negates the translation of
the glide, we get a reflection. Otherwise we get another glide. These are the
only possibilities.

This also applies to glides on either side: draw the three lines of a glide. Two of
the perpendicular lines may be thought of as occurring at the end of the glide
or at the beginning. Either way, they represent a rotation which may be used to
cancel them, leaving only one reflection. A more arbitrary rotation may be used
that cancels only one reflection used in the translation in the glide, eventually
giving three reflections in three lines which have no triple point, which we have
shown to be a nontrivial glide.

By performing two glides which differ only in the length of translation (but are
in the same direction), we obtain a translation. Finally, consider two glides in
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different directions, t1rL and rL′t2. Composing them in the right way, we have

t1 ◦ (rLrL′) ◦ t2,

The composition of a translation, rotation, and translation, which we know to
be a rotation from our chart. Therefore, glides can compose to rotations as
well.

Reflection rL Translation t(α,β) Rotation Rθ,P Glide reflection

Reflection rM Rot, Tran Refl, Glide Refl, Glide Rot, Tran
Translation t(γ,δ) Refl, Glide Tran Rot Refl, Glide
Rotation Rφ,Q Refl, Glide Rot Rot, Tran Refl, Glide
Glide Reflection Rot, Tran Refl, Glide Refl, Glide Rot, Tran

Remark: We have shown that when composing isometries of opposite parity,
in any order, it is always possible to obtain a reflection or a glide. The same is
not true for the orientation-preserving isometries, as we see that some entries
in our table include only rotations or translations, but not both. Interestingly,
the only combinations in which we don’t have “both” kinds of outcomes are
the composition of translations with orientation-preserving isometries.

Also notice that also that our chart is symmetric. While isometries may not
commute, neither direction of composition is “richer” than the other.

(d) Take the rotation Rπ/2 and the standard reflection r. Then

Rπ/2 ◦ r(x, y) = Rπ/2(x,−y) = (y, x),

but

r ◦Rπ/2(x, y) = r(−y, x) = (−y,−x).

so Rπ/2 ◦ r 6= r ◦Rπ/2.

(e) Notice (by calculating) that the glide t(1,0)r does not commute with either the
translation t(0,1), nor the reflection rL in the y-axis, nor the rotation Rπ/2.

Problem 5. (20 pts) Let T ⊆ R2 be the equilateral triangle centered at the origin.

(a) Show that there are exactly six isometries f : R2 −→ R2 which verify f(T ) = T .
Let us call them s1, s2, s3, s4, s5, s6.

(b) Explain why the composition si ◦ sj, for any 1 ≤ i, j ≤ 6, must be of the form
sk, for some 1 ≤ k ≤ 6.

(c) Complete the table below according to this product rule: in entry ij in the
table is sk if sj ◦ si = sk. In particular, explain why the set of isometries which
preserve T form a group GT .
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s1 s2 s3 s4 s5 s6
s1
s2
s3
s4
s5
s6

(d) Is the group GT commutative, i.e. si ◦ sj = sj ◦ si, for all 1 ≤ i, j ≤ 6 ?

(e) Consider the set I = {1, 2, 3} with three elements. Show that there are exactly
six bijections F : I −→ I. Let us call them F1, F2, F3, F4, F5, F6.

(f) Complete the following table, where in the (ij) entry we write the bijection Fk
which corresponds to the composition Fj ◦ Fi.

F1 F2 F3 F4 F5 F6

F1

F2

F3

F4

F5

F6

(g) Show that there is a relabeling of s1, s2, s3, s4, s5, s6 into F1, F2, F3, F4, F5, F6

such that the two tables in Part 2.(c) and Part 2.(f) above coincide.

This proves that the group of isometries of the regular triangle is the same as
the group of bijections of three elements.

(h) Let S ⊆ R2 the square with vertices (1, 1), (1,−1), (−1, 1), (−1,−1) ∈ R2. How
many isometries f : R2 −→ R2 are there such that f(S) = S ?

Solution.

(a) Assume the result of part (e). Such an isometry must leave invariant the set of
vertices of T , so there are only 3! = 6 candidates for isometries, the different
permutations of vertices. We must show that all of these permutations are
actually realized by isometries. Let’s fix T to have vertices on the unit circle at
angles 0, 2π/3, and 4π/3 (the cube roots of unity in the complex plane). Let
L1 be the x-axis, L2 be the line through the origin at angle 2π/3, and L3 be
the line through the origin at 4π/3. Notice that the six isometries

s1 = Id, s2 = R2π/3, s3 = R4π/3, s4 = L1, s5 = L2, and s6 = L3

each realize a different permutation of the vertices of T .
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(b) You can verify this using theorems about rotations and reflections, or by cal-
culating all of the formulas, but here’s a cute way: the composition of two per-
mutations (meaning, you mix up the numbers 1, 2, and 3, ordered, and then
do it again) is of course another permutation. Since isometries are uniquely
determined by where they send three points, and since every permutation of
the vertices is in our set {s1, s2, . . . , s6}, any composition si ◦ sj will correspond
to a permutation realized by some other sk in the set.

(c) Your table may look different from mine, if you labeled your isometries si
differently from me. But the first filled column and row should be the same
(why?).

s1 s2 s3 s4 s5 s6
s1 s1 s2 s3 s4 s5 s6
s2 s2 s3 s1 s5 s6 s4
s3 s3 s1 s2 s6 s4 s5
s4 s4 s6 s5 s1 s3 s2
s5 s5 s4 s6 s2 s1 s3
s6 s6 s5 s4 s3 s2 s1

Let’s check that we have a group. As always, we have the binary operation of
function composition. In part (b) we checked the closure property (that the
binary operation actually maps into the set we care about). Function compo-
sition is always associative. The isometry s1 works as a valid identity element
because Id ◦f = f ◦ Id = f for any function. Finally, every element has a valid
inverse. The reflections are their own inverses, and the two nontrivial rotations
are inverses of each other.

(d) No, GT is a nonabelian group. In particular,

s2 ◦ s4 = s6 6= s5 = s4 ◦ s5.

Remark: What we have just constructed is called the multiplication table for
our group. Every (finite) group has one, and you can always tell whether a
group is abelian or not by checking if the table is symmetric (in the matrix
sense). It is important that GT here is not abelian. Play around with the
isometries to see why they don’t commute.

(e) In any set of n elements, such a function is determined by its n images. The
image of 1 has n choices (any of the numbers 1, . . . , n). The function is bijective,
so F (2) 6= F (1), thus we have n − 1 choices for this image. Next, F (3) will
have n− 2 possibilities. Continuing, we finish by finding 2 choices for F (n− 1)
and only one choice left for F (n). Therefore, we have

n(n− 1)(n− 2) . . . (2)(1) = n!

choices, and these are the possible number of bijections. In our case n = 3, so
there are 3! = 3 · 2 · 1 = 6 bijections. These are called permutations. Let’s give
them labels. F1 is the identity function. F2 is the function that sends 1 7→ 2,
2 7→ 3, and 3 7→ 1. F3 is the function that sends 1 7→ 3, 3 7→ 2, and 2 7→ 1. F4

is the function that fixes only 1 (so it flips 2 with 3), F5 fixes only 2, and F6
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fixes only 3.

(f) I have chosen the labels so that the function function Fi to corresponds exactly
to how the isometry si permutes the vertices, so the tables are identical.

F1 F2 F3 F4 F5 F6

F1 F1 F2 F3 F4 F5 F6

F2 F2 F3 F1 F5 F6 F4

F3 F3 F1 F2 F6 F4 F5

F4 F4 F6 F5 F1 F3 F2

F5 F5 F4 F6 F2 F1 F3

F6 F6 F5 F4 F3 F2 F1

(g) Due to the choices I made, the labeling is the boring one: si 7→ Fi. In general,
you want to relabel your si as the Fi that corresponds to the way that si
permutes the vertices, after you’ve given your vertices the names 1, 2, and 3.
Here I am thinking of the vertices T as labeling the vertex on the x axis as 1, and
then continuing to increase the vertex number by 1 as I move counterclockwise.

Remark: The group of bijections of n elements is called the group of permuta-
tions on n letters or Sn. The group of symmetries of the regular n-gon is called
the dihedral group, or Dn. What we have shown is that the group S3 is isomor-
phic to D3, meaning, informally, that there is a relabeling of the elements of
one into the elements of the other such that the multiplication tables are the
same.

(h) There are 8, the four rotations (including the trivial one) and four reflections
found in Problem Set 1, Problem 6, parts (b) and (d). Here is a quick way
to see that, given the proofs in the solutions to that problem. Any isometry
preserving the square must fix the origin, which limits us to rotations about
the origin and reflections in lines through origin. But any other rotation or
reflection through the origin, other than the 8 considered here, has been proved
to not preserve the square.

Alternatively, you could go the permutation rout. There are 4! = 24 possible
permutations, but not all are possible, because many of them would take op-
posite corners to adjacent corners, shortening their distance, so they cannot be
isometries. This didn’t happen with the triangle because all points on T were
the exact same distance from all other points.

Remark: Consider thinking about the number of elements of a general dihe-
dral group for a polygon with n sides. Can you find a pattern? Does it continue
to be true that Sn is isomorphic to Dn, past n = 3?

Problem 6. (20 pts) For each of the ten sentences below, justify whether they are true
or false. If true, you must provide a proof, if false you must provide a counter-example.
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(a) Planar Isometries preserve angles. That is, let O,P,Q ∈ R2 be points and

f : R2 −→ R2 an isometry. Then the angle between the vectors ~OP and ~OQ

equals the angle between the vectors ~f(O)f(P ) and ~f(O)f(Q).

(b) The set of rotations Rθ,P : R2 −→ R2 form a group inside the isometry group
of the Euclidean plane.

(c) The set of translations t(α,β) : R2 −→ R2 form a group inside the isometry
group of the Euclidean plane.

(d) Let us call an isometry orientation-preserving if it is the product of two reflec-
tions. The set of orientation-preserving isometries is a group.

(e) Let us call an isometry orientation-reversing if it is the product of one or three
reflections. The set of orientation-reversing isometries is a group.

(f) Suppose that f, g : R2 −→ R2 are isometries and A,B,C ∈ R2 are three points.
If f(A) = g(A), f(B) = g(B) and f(C) = g(C), then f = g.

(g) Let f, g : R2 −→ R2 be isometries that fix all points of the same line L ⊆ R2.
Then it must be that f = g.

(h) Let T be the triangle in Problem 5, and f, g : R2 −→ R2 be isometries such
that the vertices of the triangle f(T ) coincide with the vertices of the triangle
g(T ). Then f = g.

(i) Let T be the triangle in Problem 5, and f : R2 −→ R2 be an isometry such
that f(P ) = P for P ∈ T . Then f(Q) = Q for all Q ∈ R2.

(j) Let A,B,C,D ∈ R2 be four points. There always exists a point P ∈ R2 such
that d(P,A) = d(P,B) = d(P,C) = d(P,D).

Solution.

(a) True. We have kind of been using this implicitly whenever we say “by a suitable
isometry, assume. . . ” or “there is a change of coordinates such that. . . ”. If our
points are not collinear, then they form a triangle. The side lengths of this
triangle are preserved by our isometry f , so by the Side-Side-Side theorem of
grade school geometry, the image of the triangle is congruent to the original
triangle, and therefore the angles are preserved.

If our points are on a line, then they form the angle 0 or π, depending on which
one is in the middle. Isometries map lines to lines, so the image of these points
also forms an angle of 0 or π. The angle can’t switch from 0 to π (or vice
versa), because to do so would require that f reorder points on a line, which
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would not preserve distance.

(b) False. Problem 4 (a) and (b) of Problem Set 1 show that this is true for a fixed
value of P , just varying θ, but the result fails if we are allowed to compose
rotations about different points. Take distinct parallel lines M and N , and a
third line transverse to these, L. Then rLrM and rNrL are both rotations, but

(rNrL) ◦ (rLrM) = rN ◦ (rLrL) ◦ rM = rN ◦ Id ◦rM = rNrM

is a nontrivial translation, which we have argued cannot be a rotation.

(c) True. This was the content of Problem Set 1, Problem 4, parts (c) and (d),
along with the observation that the identity is a translation (by the zero vector).

(d) True. We denote this subgroup of Iso(R2) by Iso+(R2). We need to check
identity, and inverses, and closure. The identity is the product rLrL for any
line L, so it preserves orientation. Any product of two reflections rLrM has the
inverse

(rLrM)−1 = r−1M r−1L = rMrL,

which preserves orientation.

Finally, to show closure, consider the orientation preserving isometries rL1rL2

and rL3rL4 through four arbitrary lines. If either is the identity, then their
composition clearly preserves orientation. Assume then that neither is the
identity, meaning L1 6= L2 and L3 6= L4. We wish to show that

rL1rL2 ◦ rL3rL4

is either a rotation or a translation (because both of these preserve orienta-
tion). If rL1rL2 and rL1rL2 are both translations, then their composition is a
translation by part (c). If they are both rotations, then we are in the situation
of the counterexample given in the solution to part (b), so their composition is
a translation by the calculation given there.

Suppose rL1rL2 is a rotation and rL3rL4 is a translation. Recall that we can
factor translations and rotations in many ways. Therefore, by refactoring, we
can assume that L1 and L2 are rotated so that L2 is parallel to L3 and L4 (notice
that L3 and L4 are parallel by assumption). Then by refactoring, translate L3

and L4 so that L3 coincides with L2. Similarly, if rL1rL2 is a translation and
rL3rL4 is a rotation, then we can translate the first pair of lines and rotate the
second pair to make L3 = L2. In either case,

rL1rL2 ◦ rL3rL4 = rL1 ◦ (rL2rL3) ◦ rL4

= rL1 ◦ (rL2rL2) ◦ rL4

= rL1 ◦ Id ◦ rL4

= rL1rL4 ,

which is a rotation, because L1 cannot be parallel to L4 (because both con-
structions ended up making the first three lines parallel, or the last three lines
parallel, so if L1 and L4 are parallel, then all four lines are parallel, and then
we never had a rotation).
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(e) False. In particular, this set does not contain the identity.

Alternatively, the product of two orientation-reversing isometries will always
be an orientation-preserving isometry. In particular, the product of any two
reflections is two reflections, which can never be written as the product of one
or three reflections. Therefore, the binary operation of function composition is
not closed on the set of orientation-reversing isometries.

(f) False. This looks like a Theorem that we have discussed, except that it is miss-
ing the crucial assumption that A, B, and C are not collinear. This suggests
that we pick collinear points as a counterexample. Indeed, suppose these points
lie on a line L. Then take f = Id and g = rL. Clearly f 6= g, but all three
points are fixed by each, meaning f(A) = A = g(A), f(B) = B = g(B), and
f(C) = C = g(C).

(g) False. Again take f = Id and g = rL.

(h) False. In Problem 5 above, we constructed six distinct such isometries. Each
one created images of the triangle with identical sets of vertices, but no two
were the same isometry.

(i) True. Take g = Id in part (h). Then the vertices of f(T ) coincide with the
vertices of Id(T ) = T , so f = Id, and therefore fixes all points in the plane.

(j) False. We will prove a stronger result, that you can’t always find such a P
even if you only require equal distances from three points. Let A, B, and C
be distinct points on a common line L. The points equidistant from A and B
form a line M . The reflection rL exchanges A and B, so L is perpendicular to
M . Repeat this for the pair of points B and C, obtaining the line N of points
equidistant from B and D, which is again perpendicular to L. Since C 6= A, we
have that N 6= M are two nonintersecting lines. Therefore, there is no point P
equidistant from A, B, and C. Meaning it is impossible to have

d(P,A) = d(P,B) = d(P,C).

Problem 7. (20 pts) In this problem we will explore wall-paper tilings of the Euclidean
plane. There is a classification of all possible regular tiling of the plane, resulting in
17 isometry subgroup of the group of isometries of R2. In this exercise we will study
some of them. Each of the patterns displayed in the Figures should be understood as
extending infinitely all over the Euclidean Plane R2.

(a) Explore whether the pattern in Figure 1 admits any translational symmetries,
i.e. it is invariant under translations in the Euclidean plane. Is it invariant
under any reflection ?
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Figure 1. The pattern in the Patio de los Arrayanes in La Alhambra, Spain.

(b) Explore whether the pattern in Figure 2 admits any rotational symmetries, i.e.
whether it is invariant under certain rotations of the Euclidean plane. Are there
any reflection which preserve this pattern ?

Figure 2. The pattern in La Torre de las Infantas in La Alhambra, Spain.
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(c) Find all translations which leave the pattern in Figure 3 invariant.

Figure 3. A tiling of the plane made of fish and birds.

(d) Compare the isometries which preserve the brick pattern in Figure 4 with the
isometries that preserve the tile pattern in Figure 5.
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Figure 4. First Brick Tiling.

Figure 5. Second Brick Tiling.

(e) (Bonus - Extra Credit) Explore the isometries of the patterns in Figures 6, 7,
8 and 9.
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Figure 6. M.C. Escher Birds.
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Figure 7. General in Horse Tiling.

Figure 8. M.C. Escher’s fish.
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Figure 9. M.C. Escher’s Artwork.

Solution.

Take a look at the Wikipedia page on wallpaper groups to see the classification of
these 17 subgroups of Iso(R2). See if you can decide which group each of these tilings
correspond to.

(a) Fig. 1 admits two independent directions of translational symmetry (focusing
on a six-pointed star, one may shift it to the next one to the right, or the next
one to the upper-right). Any reflection would reverse the orientation of the
pin-wheels (which point counter-clockwise now), so Fig. 1 admits no reflection
symmetries.

(b) There is some local symmetry in rotation by π/4 in Fig. 2, but this isn’t good
enough to preserve the whole tiling, whose main breakdown is into squares. We
can however conclude that this tiling has symmetry by rotation π/2. Addition-
ally, there is reflection symmetry through the usual four lines which preserve
the square (notice that these generate the rotations by π/2 anyway).

(c) Similar to Fig. 1, we have two independent directions of translational symme-
try in Fig. 3. All translations are generated by combinations of the translation
T1 which sends a fish to the next one above and to the left, and T2 which sends
a fish to the next one above and to the right.

https://en.wikipedia.org/wiki/Wallpaper_group
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(d) These are similar. Say the bricks have dimensions 2 units by 1 unit. The trans-
lational symmetries of Fig. 4 are generated by t(−1,1) and t(4,0), while those of
Fig. 5 are generated by t(1,1) and t(4,0). In fact, these figures differ only by a
single reflection, (reflection in either the x-axis or the y-axis will work). There-
fore, neither has rotational symmetry, because that would change the direction
that the bricks “point”. Similarly, neither have reflection symmetry, because
such a symmetry would have to be parallel to the direction of pointing, but
even still would not preserve the pattern of lines made by the bricks.

(e) Much can be said about each. Note that all wallpaper groups have two inde-
pendent directions of translation. Particularly interesting is that Fig. 8 does
not have rotational symmetry by π/3 (it would change the orientation of the
fish fins), but does have rotational symmetry by 2π/3. The same is true of Fig.
9.


