1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
use std::marker::PhantomData;
use crate::numbers::*;
use libbgs_util::*;
/// A decomposition of a finite cyclic group into the direct sum of its Sylow subgroups.
/// In particular, this group represents the right hand side of the isomorphism
/// $$G \cong \bigoplus_{i = 1}^n \mathbb{Z} / p_i^{t_i} \mathbb{Z}$$
/// where
/// $$|G| = \prod_{i = 1}^n p_i^{t_i}$$
/// and $G$ is a finite cyclic group.
pub struct SylowDecomp<S, const L: usize, C: SylowDecomposable<S>> {
precomputed: [[C; 256]; L],
generators_powered: [C; L],
_phantom: PhantomData<S>,
}
/// An element of the decomposition of a finite cyclic group into the direct sum of its Sylow
/// subgroups.
pub struct SylowElem<S, const L: usize, C: SylowDecomposable<S>> {
/// The powers on the generators of the Sylow subgroups.
/// In particular, if an element of a group $G$ with generators $g_1,\ldots,g_n$ is
/// $$g = \prod_{i = 1}^n g_i^{r_i},$$
/// then the coordinates of that element are $r_1,\ldots,r_n$.
pub coords: [u128; L],
_phantom: PhantomData<(C, S)>,
}
/// Groups that can be decomposed into a direct sum of cyclic Sylow subgroups.
/// In particular, these groups must be finite and cyclic.
pub trait SylowDecomposable<S>: Factor<S> + GroupElem + Eq {
/// Finds a Sylow generator for the Sylow subgroup of prime power index `i`.
fn find_sylow_generator(i: usize) -> Self;
/// True if the given element is a generator of the Sylow subgroup of the prime power
/// represented by `d`.
fn is_sylow_generator(candidate: &Self, d: (u128, usize)) -> Option<Self> {
let pow = Self::SIZE / intpow::<0>(d.0, d.1 as u128);
let res = candidate.pow(pow);
if res.pow(intpow::<0>(d.0, (d.1 - 1) as u128)) == Self::ONE {
None
} else {
Some(res)
}
}
/// Returns the number of elements of a particular order.
/// The argument is the powers of the prime factors of the group's order.
fn count_elements_of_order(ds: &[usize]) -> u128 {
let mut total = 1;
for (d, (p, t)) in ds.iter().zip(Self::FACTORS.factors()) {
if *d > *t {
return 0;
} else if *d > 0 {
let tmp = intpow::<0>(*p, (*d - 1) as u128);
total *= tmp * *p - tmp;
}
}
total
}
}
impl<S, const L: usize, C: SylowDecomposable<S>> SylowDecomp<S, L, C> {
/// Returns a decomposition for the group.
/// This method may be expensive because it calls `find_sylow_generator` for each Sylow
/// subgroup.
pub fn new() -> SylowDecomp<S, L, C> {
let mut generators_powered = [C::ONE; L];
#[allow(deprecated)]
let mut precomputed = [C::ONE_256; L];
let mut i = 0;
while i < L {
let x = C::find_sylow_generator(i);
let mut g = C::ONE;
let mut j = 0;
while j < 256 {
precomputed[i][j] = g.clone();
g = g.multiply(&x);
j += 1;
}
generators_powered[i] = g;
i += 1;
}
SylowDecomp {
precomputed,
generators_powered,
_phantom: PhantomData,
}
}
/// Get the generators for decomposition.
/// The index of each generator corresponds to the index of the prime power in the
/// factorization. That is, if the prime power at index `i` of the factorization is $(p, t)$,
/// then the generator at index `i` of the array returned by the `generators` method is a
/// generator of the Sylow subgroup of order $p^t$.
pub fn generator(&self, i: usize) -> &C {
&self.precomputed[i][1]
}
}
impl<S, const L: usize, C: SylowDecomposable<S>> Factor<S> for SylowElem<S, L, C> {
const FACTORS: Factorization = <C as Factor<S>>::FACTORS;
}
impl<S, const L: usize, C: SylowDecomposable<S>> SylowDecomposable<S> for SylowElem<S, L, C> {
fn find_sylow_generator(i: usize) -> Self {
let mut coords = [0; L];
coords[i] = 1;
SylowElem {
coords,
_phantom: PhantomData,
}
}
}
impl<S, const L: usize, C: SylowDecomposable<S>> SylowElem<S, L, C> {
/// Returns an element of the Sylow decomposition with the given coordinates.
pub const fn new(coords: [u128; L]) -> SylowElem<S, L, C> {
SylowElem {
coords,
_phantom: PhantomData,
}
}
/// Returns the element of the original group with the given coordinates.
pub fn to_product(&self, g: &SylowDecomp<S, L, C>) -> C {
(0..L).filter(|i| self.coords[*i] > 0).fold(C::ONE, |x, i| {
let mut y = g.precomputed[i][(self.coords[i] & 0xFF) as usize].clone();
if self.coords[i] > 0xFF {
y = y.multiply(&g.generators_powered[i].pow(self.coords[i] >> 8));
}
x.multiply(&y)
})
}
/// Returns the positive integer represented by this `Factorization`.
pub fn order(&self) -> u128 {
let mut res = 1;
for i in 0..L {
let mut x = *self;
for j in 0..L {
if j == i {
continue;
}
x = x.pow(C::FACTORS.factor(j));
}
let mut r = 0;
while x != Self::ONE {
x = x.pow(C::FACTORS[i].0);
r += 1;
}
res *= intpow::<0>(C::FACTORS[i].0, r);
}
res
}
}
impl<S, const L: usize, C: Eq> GroupElem for SylowElem<S, L, C>
where
C: SylowDecomposable<S>,
{
const ONE: Self = SylowElem {
coords: [0; L],
_phantom: PhantomData,
};
const SIZE: u128 = C::SIZE;
fn multiply(&self, other: &SylowElem<S, L, C>) -> SylowElem<S, L, C> {
let mut coords = self.coords;
for i in 0..L {
coords[i] = (coords[i] + other.coords[i]) % C::FACTORS.factor(i);
}
SylowElem {
coords,
_phantom: PhantomData,
}
}
fn inverse(&self) -> SylowElem<S, L, C> {
let mut coords = self.coords;
for i in 0..L {
coords[i] = C::FACTORS.factor(i) - coords[i];
}
SylowElem {
coords,
_phantom: PhantomData,
}
}
}
impl<S, const L: usize, C: SylowDecomposable<S>> PartialEq for SylowElem<S, L, C> {
fn eq(&self, other: &Self) -> bool {
self.coords == other.coords
}
}
impl<S, const L: usize, C: SylowDecomposable<S>> Eq for SylowElem<S, L, C> {}
impl<S, const L: usize, C: SylowDecomposable<S>> Clone for SylowElem<S, L, C> {
fn clone(&self) -> Self {
*self
}
}
impl<S, const L: usize, C: SylowDecomposable<S>> Copy for SylowElem<S, L, C> {}
impl<S, const L: usize, C: SylowDecomposable<S>> std::fmt::Debug for SylowElem<S, L, C> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.coords.fmt(f)
}
}
/// Utility methods for use in other tests.
/// These methods should probably not be used outside of this crate.
pub mod tests {
use super::*;
/// True if `x` is of order `d`, False otherwise.
/// Expensive and intended for use only with small values of `d`.
pub fn test_is_generator_small<S, const L: usize, C: SylowDecomposable<S>>(
x: &C,
d: usize,
) -> bool {
let mut y = x.clone();
for _ in 1..d {
if y == C::ONE {
return false;
}
y = y.multiply(x);
}
y == C::ONE
}
/// True if `x` is not of order prime power dividing `d`, but is a prime power of `d`.
/// Much cheaper than `test_is_generator_small`, but may return a false positive.
pub fn test_is_generator_big<S, const L: usize, C: SylowDecomposable<S>>(
x: &C,
d: (u128, usize),
) {
let mut y = x.clone();
for _ in 0..d.1 {
assert!(y != C::ONE);
y = y.pow(d.0);
}
y = y.pow(d.0);
assert!(y == C::ONE);
}
}