$\begin{array}{l} \text{MATH 22AL} \\ \text{Lab} \ \# \ 4 \end{array}$

1 Objectives

In this LAB you will explore the following topics using MATLAB.

- Properties of invertible matrices.
- Inverse of a Matrix
- Explore LU Factorization

2 Recording and submitting your work

The following steps will help you to record your work and save and submit it successfully.

- Open a terminal window.
 - In Computer LAB (2118 MSB) click on terminal I con at the bottom of the screen
 - In Windows OS, Use Putty
 - In MAC OS, Use terminal window of MAC.
- Start a MATLAB Session that is :
 - Type "textmatlab" Press Enter
- Enter your information that is :
 - Type " diary LAB4.text"
 - Type "% First Name:" then enter your first name
 - Type "% Last Name:" then enter your Last name
 - Type "% Date:" then enter the date
 - Type "% Username:" then enter your Username for 22AL account
- Do the LAB that is :
 - Follow the instruction of the LAB.
 - Type needed command in MATLAB.
 - All commands must be typed in front of MATLAB Command " >> "..
- Close MATLAB session Properly that is :
 - When you are done or if you want to stop and continue later do the following:
 - Type "save" Press Enter
 - Type "diary off" Press Enter

- Type "exit" Press Enter
- Edit Your Work before submitting it that is :
 - Use pico or editor of your choice to clean up the file you want to submit:
 - in command line of pine type "pico LAB4.text"
 - Delete the error
 - Properties of invertible matrices.
 - Inverse of a Matrix
 - Explore LU Factorization s or insert missed items.
 - Save using " $\hat{}$ o= control key then o"
 - Exit using "^ x = control key then x"
- Send your LAB that is :
 - Type "ssh point" : Press enter
 - Type submitm22al LAB4.text

MAT22AL

3 Inverse of A

3.1 Reading:

Suppose A is a square matrix. The inverse is written A^{-1} and is defined to be a matrix when A is multiplied by A^{-1} the result is the identity matrix I.

Note: The following facts about the inverse of a matrix are information from your 22A class. Section 2.5. Please review them before continuing the LAB

- Not all square matrices have inverses.
- A square matrix which has an inverse is called invertible or nonsingular
- A square matrix without an inverse is called non invertible or singular.
- The inverse exists if and only if elimination produces n pivots
- The matrix A cannot have two different inverses.
- If A is invertible, the one and only solution to Ax = 0 is $x = A^{-1}x$
- Suppose there is a nonzero vector x such that Ax = 0 then A cannot have an inverse.
- A 2 by 2 matrix is invertible if and only if ad bc is not zero
- A diagonal matrix has an inverse provided no diagonal entries are zero.
- If A and B are invertible then so is AB. The inverse of a product $(AB)^{-1} = B^{-1}A^{-1}$
- For square matrices, an inverse on one side is automatically an inverse on the other side.
- The right-inverse equals the left-inverse. BA = I and AC = I then B = C
- If A doesn't have n pivots, elimination will lead to a zero row.
- An invertible matrix A can't have a zero row!
- A triangular matrix is invertible if and only if no diagonal entries are zero.
- The Gauss-Jordan method solves $AA^{-1} = I$ to find the *n* columns of A^{-1} .

3.2 Working with MATLAB

3.2.1 Basic Properties of inverse

type	A = [1 2 3 ; 3 4 1; 9 4 2]	To enter a 3 by 3 matrix.
type	AI = inv(A)	to find the inverse of A
type	AII = inv(AI)	Explain what is happening by typing $\%$ before your answer.
type	AR = rref(A)	to see the Reduced Row Echelon Form of A. What type of the
		matrix you are getting? Is this true for all invertible matrices A ?
		Explain by typing $\%$ before your answer.
type	B(:,1) = A(:,1)	to define the first column of B as first column of A.
type	B(:,2) = A(:,2)	to define the second column of B as second column of A.
type	B(:,3) = A(:,1) + A(:,2)	to define the third column of B as the sum of the first two columns
		of A.
type	BR = rref(B)	to see the Reduced Row Echelon Form of B.
		Do you see a row of zeros?
type	BI = inv(B)	Does the inverse of B exist? Explain by typing % before your
		answer.

3.2.2 Inverse of Diagonal Matrices

type	inv(C)	To see the inverse of C.
type	format rat	to see the numbers in fraction format.
type	inv(C)	To see the inverse of C.
type	$\mathbf{D} = [\ 0 \ 0 \ 3; \ 0 \ 8 \ 0; \ 5 \ 0 \ 0]$	
type	inv(D)	to see inverse of D

Without typing it in the MATLAB guess what the inverse of $E = [0 \ 0 \ 1; 0 \ 3 \ 0; 7 \ 0 \ 0]$ should be? Explain by typing % before your answer. Enter your answer as EI =

3.2.3 Inverse of Block Matrices

type $J=E^*EI$ If you did not get an Identity matrix, try it again, until you get it right.

 $\label{eq:type} {\rm F} = \qquad [\ 3\ 2\ 0\ 0\ ;\ 4\ 3\ 0\ 0\ ;\ 0\ 0\ 6\ 5\ ;\ 0\ 0\ 7\ 6\].$

type FI = inv(F) to find inverse of F

Any thing interesting? Explain by typing % before your answer.

```
type F1I = inv([3\ 2; 4\ 3])
```

type F1I = inv([6 5; 7 6])

Explain the relation of the last two inverses with the inverse of matrix F, by typing % before your answer.

3.2.4 An Interesting Observation

- type $E1 = 5^* eye(4) ones(4,4)$
- type E1I = inv(E1) to see the inverse of E1
- type $E2 = 6^* eye(5) ones(5,5)$
- type E2I = inv(E2) to see the inverse of E1
- type E3 = 3*eye(2) ones(2,2)

Generalize your observation. Representing a $n \times n$ identity matrix by I_n and a $n \times n$ matrix of ones by O_n write an inverse for $(n + 1)I_n - O_n$, it will be in the form of $k(I_n + O_n)$. Enter your response by typing % before your answer. Your answer has to be in the form of $INV((n + 1)I_n - O_n) = k(I_n + O_n)$, where the k is replaced by the value you choose.

4 Using Gauss- Jordan Elimination to calculate H^{-1}

You may find inverse of a $n \times n$ matrix H by forming a new matrix as $K = [A \ I]$ then using rref(K), if H is invertible, H will transform to I and I will transform to H^{-1} .

4.1 Calculating H^{-1}

type	H = [13; 27]	
type	H1 = [H eye(2)]	to form $[H \ I]$
type	H2=rref(H1)	To find Reduced Row Echelon Form of $[H \ I]$
type	HI = H2(:,[3 4])	to extract inverse of H
type	inv(H)	To find the inverse of ${\cal H}$ using MATLAB command
type	$L = [2 \ 1 \ 0; 1 \ 2 \ 1; 0 \ 1]$	2] To enter 3×3 matrix L.
type	$J = [1 \ 3 \ -5; 3 \ 2 \ 1;$	0 1 2] To enter 3×3 matrix L.
type	LI1 = inv(L)	to find inverse of L
type	LI2 = rref([L eye	(3)]) to calculate inverse of L
type	LI3 = LI2(:, 4:6)	to extract the inverse of L
type	JI1 = inv(J)	to find inverse of J
type	JI2 = rref([J eye)	3)]) to calculate inverse of J
type	JI3 = JI2(:, 4:6)	to extract the inverse of J

4.2 Inverse of LJ

type	LJ = L * J	to find LJ
type	$LJI = inv(L \ast J)$	to calculate inverse of LJ
type	LJ2=inv(L) *inv(J)	$L^{-1}J^{-1}$
type	LJ3 = inv(J) *inv(L)	$J^{-1}L^{-1}$

4.2.1 True, False questions

With these observation, determine which one of the following statements is true which one is false:

For each statement enter your response after % as (for example a.) is True

) or (for example a.) is False).

- a.) If A and B are given invertible matrices, then $(AB)^{-1} = (A)^{-1}(B)^{-1}$
- **b.**) For any given invertible matrices A and B we have $(AB)^{-1} = (B)^{-1}(A)^{-1}$
- c.) For any given matrices A and B we have $(AB)^{-1} = (B)^{-1}(A)^{-1}$
- d.) There is a group of matrices in which for any given invertible matrices A and B in that group, we have $(AB)^{-1} = (A)^{-1}(B)^{-1}$.

5 LU Factorization

5.1 Reading

Using Gaussian elimination we can express any square matrix as the product of a permutation of a lower triangular matrix and an upper triangular matrix. M = PLU. If A is invertible, Usually we choose the lower triangular matrix L with diagonal entries 1 and if we choose both L and U to have diagonal entries 1, then we need a diagonal matrix in the middle and decomposition becomes as M = PLDU, which is unique. One of the applications of LU decomposition or factorization is in solving a linear system AX = b. This can be seen as LUX = b. Assume UX = Y the linear system becomes as LY = b which can be solves easily for Y. Then the system UX = Y can be solved for X. You can read more on LU-Factorization in section 2.6 of your text book

5.2 Using MATLAB

You can find LU factorization of a matrix in MATLAB using lu(A), the matrix L returned by MATLAB is a permutation of a lower triangular matrix.

5.2.1 Note

[L,U] = lu(A) stores an upper triangular matrix in U and a "potentially lower triangular matrix" (i.e. a product of lower triangular and permutation matrices) in L, so that $A = L^*U$. A can be rectangular.

[L,U,P] = lu(A) returns unit lower triangular matrix L, upper triangular matrix U, and permutation matrix P so that $P^*A = L^*U$.

5.2.2 Examples

type	$A = [\ 8\ 2\ 9; \ 4\ 9\ 4; \ 6\ 7\ 9\]$	To enter A.
type	$[L \ U] = lu(A)$	To see LU factorization of A.
type	[L ~U ~P ~] = lu(A)	To see LU factorization of A with the permutation matrix
		P. Note that matrix P in this case will be an identity
		matrix.
type	$A1 = L^*U$	To check your answer.
type	$\mathbf{B} = [\ 6\ 7\ 9;\ 4\ 9\ 4;\ 8\ 2\ 9\]$	To enter B. Note that first and third row of A are inter-
		changed.
type	$[\mathrm{L}~\mathrm{U}~\mathrm{P}~] = \mathrm{lu}(\mathrm{B})$	To see LU factorization of B with the permutation matrix
		Р.
type	$[L \ U \] = lu(B)$	To see LU factorization of B. Notice that L needs row ex-
		change (permutation) to become a lower triangular ma-
		trix.
type	$\mathbf{M}{=}\;[2\;1\;0;\;1\;2\;1;\;0\;1\;2]$	trix. To enter M.
type type	$M = [2 \ 1 \ 0; \ 1 \ 2 \ 1; \ 0 \ 1 \ 2]$ $[L \ U] = lu(M)$	
• -		To enter M.
type	[L U] = lu(M)	To enter M. To see LU factorization of M.
type	[L U] = lu(M)	To enter M. To see LU factorization of M. To see LU factorization of M with the permutation ma-
type type	[L U] = lu(M) [L U P] = lu(M)	To enter M. To see LU factorization of M. To see LU factorization of M with the permutation ma- trix.
type type type type	[L U] = lu(M) [L U P] = lu(M) N = L*U	To enter M. To see LU factorization of M. To see LU factorization of M with the permutation ma- trix. To check your answer.
type type type type	[L U] = lu(M) $[L U P] = lu(M)$ $N = L*U$ $O = [1 3 0; 3 11 4; 0 4 9]$	To enter M. To see LU factorization of M. To see LU factorization of M with the permutation ma- trix. To check your answer. To enter O.
type type type type type	[L U] = lu(M) $[L U P] = lu(M)$ $N = L*U$ $O = [1 3 0; 3 11 4; 0 4 9]$	To enter M. To see LU factorization of M. To see LU factorization of M with the permutation ma- trix. To check your answer. To enter O. To see LU factorization of O with the permutation ma-
type type type type type	[L U] = lu(M) $[L U P] = lu(M)$ $N = L*U$ $O = [1 3 0; 3 11 4; 0 4 9]$ $[L U P] = lu(O)$	To enter M. To see LU factorization of M. To see LU factorization of M with the permutation ma- trix. To check your answer. To enter O. To see LU factorization of O with the permutation ma- trix.

5.2.3 Solving AX=b Using LU factorization

When we need to solve several equations with the same coefficient matrix A, (as $AX = b_1, AX = b_2, Ax = b_3$), an efficient method for solving all of them is to find LU factorization of A, then use forward/back substitution to find X. Computational cost of this method is roughly $\frac{2}{3}n^3$ operation (flop).

We can also use LU factorization to find inverse of a nonsingular matrix A and use it to solve AX = b.

Here is how: Assume A is a nonsingular matrix, and $\mathbf{A} = \mathbf{P}$ LU. First find the inverse of A using LU factorization as $A^{-1} = (PLU)^{-1} = U^{-1}L^{-1}P^T$. Then, $X = A^{-1}b = U^{-1}L^{-1}P^Tb$. Note that this method is not very efficient, its computational cost is $\frac{8}{3}n^3$ operation (flop).

5.2.4 Examples

typeL = [1 0 0 ; 2 1 0 ; 3 4 1]To enter L.typeU = [1 2 3 ; 0 4 5 ; 0 0 6]To enter U.type $S = L^*U$ to create S

type $b = [14\ 51\ 152]'$ to enter b To solve SX = b use LU- Factorization. consider SX = LUX = b. Set Y = UX, so you have SX = LUX = L(UX) = L(Y) = b. Solve LY = b first, this can be done by backward substitution. Do it by hand and check it with MATLAB.

type $Y = L \setminus b$ To solve LY = b for Y.

Now you have UX = Y which you can solve using forward substitution. Do it on paper then, check you answer using MATLAB

type $X = U \setminus Y$ To solve UX = Y for X.

This the end of the LAB 4, follow the directions to close your diary file save your variables, edit your work, then send it to the TA.