MATH 22AL

Lab \# 4

1 Objectives

In this LAB you will explore the following topics using MATLAB.

- Properties of invertible matrices.
- Inverse of a Matrix
- Explore LU Factorization

2 Recording and submitting your work

The following steps will help you to record your work and save and submit it successfully.

- Open a terminal window.
- In Computer LAB (2118 MSB) click on terminal Icon at the bottom of the screen
- In Windows OS, Use Putty
- In MAC OS, Use terminal window of MAC.
- Start a MATLAB Session that is :
- Type "textmatlab" Press Enter
- Enter your information that is :
- Type " diary LAB4.text"
- Type "\% First Name:" then enter your first name
- Type "\% Last Name:" then enter your Last name
- Type "\% Date:" then enter the date
- Type "\% Username:" then enter your Username for 22AL account
- Do the LAB that is :
- Follow the instruction of the LAB.
- Type needed command in MATLAB.
- All commands must be typed in front of MATLAB Command " \gg "..
- Close MATLAB session Properly that is :
- When you are done or if you want to stop and continue later do the following:
- Type "save" Press Enter
- Type "diary off" Press Enter
- Type "exit" Press Enter
- Edit Your Work before submitting it that is :
- Use pico or editor of your choice to clean up the file you want to submit:
- in command line of pine type "pico LAB4.text"
- Delete the error
- Properties of invertible matrices.
- Inverse of a Matrix
- Explore LU Factorization s or insert missed items.
- Save using "^ $\mathrm{o}=$ control key then o "
- Exit using " ${ }^{\mathrm{x}} \mathrm{x}=$ control key then x "
- Send your LAB that is :
- Type "ssh point" : Press enter
- Type submitm22al LAB4.text

MAT22AL

3 Inverse of A

3.1 Reading:

Suppose A is a square matrix. The inverse is written A^{-1} and is defined to be a matrix when A is multiplied by A^{-1} the result is the identity matrix I.
Note: The following facts about the inverse of a matrix are information from your 22A class. Section 2.5. Please review them before continuing the LAB

- Not all square matrices have inverses.
- A square matrix which has an inverse is called invertible or nonsingular
- A square matrix without an inverse is called non invertible or singular.
- The inverse exists if and only if elimination produces n pivots
- The matrix A cannot have two different inverses.
- If A is invertible, the one and only solution to $A x=0$ is $x=A^{-1} x$
- Suppose there is a nonzero vector x such that $A x=0$ then A cannot have an inverse.
- A 2 by 2 matrix is invertible if and only if $a d-b c$ is not zero
- A diagonal matrix has an inverse provided no diagonal entries are zero.
- If A and B are invertible then so is $A B$. The inverse of a product $(A B)^{-1}=B^{-1} A^{-1}$
- For square matrices, an inverse on one side is automatically an inverse on the other side.
- The right-inverse equals the left-inverse. $B A=I$ and $A C=I$ then $B=C$
- If A doesn't have n pivots, elimination will lead to a zero row.
- An invertible matrix A can't have a zero row!
- A triangular matrix is invertible if and only if no diagonal entries are zero.
- The Gauss-Jordan method solves $A A^{-1}=I$ to find the n columns of A^{-1}.

3.2 Working with MATLAB

3.2.1 Basic Properties of inverse

type $\quad \mathrm{A}=[123 ; 341 ; 942] \quad$ To enter a 3 by 3 matrix.
type $\quad \mathrm{AI}=\operatorname{inv}(\mathrm{A}) \quad$ to find the inverse of A
type $\quad \mathrm{AII}=\operatorname{inv}(\mathrm{AI}) \quad$ Explain what is happening by typing $\%$ before your answer.
type $\quad A R=\operatorname{rref}(A) \quad$ to see the Reduced Row Echelon Form of A. What type of the matrix you are getting? Is this true for all invertible matrices A ?

Explain by typing \% before your answer.
type
type
type
type
$\mathrm{B}(:, 1)=\mathrm{A}(:, 1)$
$\mathrm{B}(:, 2)=\mathrm{A}(:, 2)$
$\mathrm{B}(:, 3)=\mathrm{A}(:, 1)+\mathrm{A}(:, 2)$
to define the third column of B as the sum of the first two columns of A .
$B R=\operatorname{rref}(B)$
$B \mathrm{I}=\operatorname{inv}(\mathrm{B})$
Does the inverse of B exist? Explain by typing \% before your answer.

3.2.2 Inverse of Diagonal Matrices

type	$\mathrm{C}=$	[0003; 0020 ; $05000 ; 4000]$
type	$\operatorname{inv}(\mathrm{C})$	To see the inverse of C.
type	format rat	to see the numbers in fraction format.
type	$\operatorname{inv}(\mathrm{C})$	To see the inverse of C.
type	$\mathrm{D}=\left[\begin{array}{ccccccccc}0 & 0 & 3 & 0 & 8 & 0 & 5 & 0 & 0\end{array}\right]$	
type	$\operatorname{inv}(\mathrm{D})$	to see inverse of D

Without typing it in the MATLAB guess what the inverse of $\mathrm{E}=\left[\begin{array}{cccccc}0 & 0 & 1 ; & 0 & 3 & 0\end{array} 7000\right]$ should be? Explain by typing \% before your answer. Enter your answer as EI=

3.2.3 Inverse of Block Matrices

type $\quad \mathrm{J}=\mathrm{E}^{*} \mathrm{EI} \quad$ If you did not get an Identity matrix, try it again, until you get it right.
type $\quad \mathrm{F}=\quad[3200 ; 4300 ; 0065 ; 0076]$.
type $\quad \mathrm{FI}=\operatorname{inv}(\mathrm{F})$ to find inverse of F

Any thing interesting? Explain by typing \% before your answer.
type
$\mathrm{F} 1 \mathrm{I}=\operatorname{inv}\left(\left[\begin{array}{lll}3 & 2 ; & 4\end{array}\right]\right)$
type
$\mathrm{F} 1 \mathrm{I}=\operatorname{inv}([65 ; 76])$

Explain the relation of the last two inverses with the inverse of matrix F, by typing \% before your answer.

3.2.4 An Interesting Observation

type $\quad \mathrm{E} 1=5^{*}$ eye $(4)-\operatorname{ones}(4,4)$
type $\quad \mathrm{E} 1 \mathrm{I}=\operatorname{inv}(\mathrm{E} 1)$ to see the inverse of E1
type $\quad \mathrm{E} 2=6^{*}$ eye(5) $-\operatorname{ones}(5,5)$
type $\quad \mathrm{E} 2 \mathrm{I}=\operatorname{inv}(\mathrm{E} 2)$ to see the inverse of E 1
type $\quad \mathrm{E} 3=3^{*}$ eye $(2)-$ ones $(2,2)$

Generalize your observation. Representing a $n \times n$ identity matrix by I_{n} and a $n \times n$ matrix of ones by O_{n} write an inverse for $(n+1) I_{n}-O_{n}$, it will be in the form of $k\left(I_{n}+O_{n}\right)$. Enter your response by typing \% before your answer. Your answer has to be in the form of $\operatorname{INV}\left((n+1) I_{n}-O_{n}\right)=k\left(I_{n}+O_{n}\right)$. where the k is replaced by the value you choose.

4 Using Gauss- Jordan Elimination to calculate H^{-1}

You may find inverse of a $n \times n$ matrix H by forming a new matrix as $K=[A I]$ then using $\operatorname{rref}(K)$, if H is invertible, H will transform to I and I will transform to H^{-1}.

4.1 Calculating H^{-1}

type $\mathrm{H}=[13 ; 27]$
type $\quad \mathrm{H} 1=\left[\begin{array}{ll}\mathrm{H} & \text { eye(2) }\end{array}\right] \quad$ to form [$\left.\begin{array}{ll}H & I\end{array}\right]$
type $\quad \mathrm{H} 2=\operatorname{rref}(\mathrm{H} 1) \quad$ To find Reduced Row Echelon Form of $\left[\begin{array}{l}H\end{array}\right]$
type $\mathrm{HI}=\mathrm{H} 2\left(:,\left[\begin{array}{ll}3 & 4\end{array}\right] \quad\right.$ to extract inverse of H
type $\operatorname{inv}(\mathrm{H}) \quad$ To find the inverse of H using MATLAB command
type $L=\left[\begin{array}{llllll}2 & 1 & 0 & 1 & 2 & 1 ;\end{array} \mathbf{0} 12\right] \quad$ To enter 3×3 matrix L .
type $J=\left[\begin{array}{lll}1 & 3 & -5 ; \\ 3 & 2 & 1 ;\end{array} 012\right] \quad$ To enter 3×3 matrix L.
type $L I 1=\operatorname{inv}(L) \quad$ to find inverse of L
type $\quad L I 2=\operatorname{rref}\left(\left[\begin{array}{l}L \\ \operatorname{eye}(3)\end{array}\right]\right) \quad$ to calculate inverse of L
type $\quad L I 3=L I 2(:, 4: 6) \quad$ to extract the inverse of L
type $J I 1=\operatorname{inv}(J) \quad$ to find inverse of J
type $J I 2=\operatorname{rref}([J \quad \operatorname{eye}(3)]) \quad$ to calculate inverse of J
type $\quad J I 3=J I 2(:, 4: 6) \quad$ to extract the inverse of J

4.2 Inverse of LJ

type
$L J=L * J \quad$ to find LJ
type $L J I=\operatorname{inv}(L * J) \quad$ to calculate inverse of LJ
type $\quad \mathrm{LJ} 2=\operatorname{inv}(\mathrm{L}) * \operatorname{inv}(\mathrm{~J}) \quad L^{-1} J^{-1}$
type $\quad \mathrm{LJ} 3=\operatorname{inv}(\mathrm{J}) * \operatorname{inv}(\mathrm{~L}) \quad J^{-1} L^{-1}$

4.2.1 True, False questions

With these observation, determine which one of the following statements is true which one is false:

For each statement enter your response after \% as (for example a.) is True) or (for example a.) is False) .
a.) If A and B are given invertible matrices, then $(A B)^{-1}=(A)^{-1}(B)^{-1}$
b.) For any given invertible matrices A and B we have $(A B)^{-1}=(B)^{-1}(A)^{-1}$
c.) For any given matrices A and B we have $(A B)^{-1}=(B)^{-1}(A)^{-1}$
d.) There is a group of matrices in which for any given invertible matrices A and B in that group, we have $(A B)^{-1}=(A)^{-1}(B)^{-1}$.

5 LU Factorization

5.1 Reading

Using Gaussian elimination we can express any square matrix as the product of a permutation of a lower triangular matrix and an upper triangular matrix. $M=P L U$. If A is invertible, Usually we choose the lower triangular matrix L with diagonal entries 1 and if we choose both L and U to have diagonal entries 1, then we need a diagonal matrix in the middle and decomposition becomes as $M=P L D U$, which is unique. One of the applications of $L U$ decomposition or factorization is in solving a linear system $A X=b$. This can be seen as $L U X=b$. Assume $U X=Y$ the linear system becomes as $L Y=b$ which can be solves easily for Y. Then the system $U X=Y$ can be solved for X. You can read more on LU-Factorization in section 2.6 of your text book

5.2 Using MATLAB

You can find LU factorization of a matrix in MATLAB using lu(A), the matrix L returned by MATLAB is a permutation of a lower triangular matrix.

5.2.1 Note

$[\mathrm{L}, \mathrm{U}]=\operatorname{lu}(\mathrm{A})$ stores an upper triangular matrix in U and a "potentially lower triangular matrix" (i.e. a product of lower triangular and permutation matrices) in L, so that $A=L^{*} U$. A can be rectangular.
$[\mathbf{L}, \mathbf{U}, \mathbf{P}]=\operatorname{lu}(\mathbf{A})$ returns unit lower triangular matrix L, upper triangular ma$\operatorname{trix} U$, and permutation matrix P so that $P^{*} A=L^{*} U$.

5.2.2 Examples

type $\quad A=[829 ; 494 ; 679] \quad$ To enter A.
type $\quad[L U]=\operatorname{lu}(A) \quad$ To see $L U$ factorization of A.
type
$[\mathbf{L} \mathbf{U P}]=\operatorname{lu}(\mathbf{A})$
To see $L U$ factorization of A with the permutation matrix P. Note that matrix P in this case will be an identity matrix.
type $\quad \mathrm{A} 1=\mathrm{L}^{*} \mathbf{U}$
To check your answer.
type $B=\left[\begin{array}{ll}679 ; 494 ; 829]\end{array}\right.$ To enter B. Note that first and third row of A are interchanged.
type $\quad[\mathrm{L}$ U P $]=\operatorname{lu}(B)$
To see LU factorization of B with the permutation matrix P.
type
$[\mathbf{L} \mathbf{U}]=\operatorname{lu}(B)$
To see LU factorization of B. Notice that L needs row exchange (permutation) to become a lower triangular matrix.
type $M=\left[\begin{array}{lllllll}2 & 1 & 0 & 1 & 2 & 1 ; & 0\end{array} 12\right] \quad$ To enter M.
type $\quad[\mathrm{L} \mathbf{U}]=\operatorname{lu}(\mathrm{M}) \quad$ To see LU factorization of M .
typ
typ
typ
typ
type
$[\mathbf{L} \mathbf{U}]=\operatorname{lu}(\mathbf{O})$

To see $L U$ factorization of M with the permutation matrix.

To check your answer.
To enter 0 .
To see $L U$ factorization of O with the permutation matrix.

To see $L U$ factorization of O to notice that L needs row exchange (permutation) to become a lower triangular matrix.

5.2.3 Solving $\mathbf{A X}=\mathrm{b}$ Using LU factorization

When we need to solve several equations with the same coefficient matrix A, (as $A X=b_{1}, A X=b_{2}, A x=b_{3}$), an efficient method for solving all of them is to find LU factorization of A , then use forward/back substitution to find X . Computational cost of this method is roughly $\frac{2}{3} n^{3}$ operation (flop).

We can also use LU factorization to find inverse of a nonsingular matrix A and use it to solve $A X=b$.

Here is how: Assume A is a nonsingular matrix, and $\mathbf{A}=\mathbf{P}$ LU. First find the inverse of A using $\mathbf{L U}$ factorization as $A^{-1}=(P L U)^{-1}=U^{-1} L^{-1} P^{T}$. Then, $X=A^{-1} b=U^{-1} L^{-1} P^{T} b$. Note that this method is not very efficient, its computational cost is $\frac{8}{3} n^{3}$ operation (flop).

5.2.4 Examples

To solve $S X=b$ use LU- Factorization. consider $S X=L U X=b$. Set $Y=U X$, so you have $S X=L U X=L(U X)=L(Y)=b$. Solve $L Y=b$ first, this can be done by backward substitution. Do it by hand and check it with MATLAB. type $\quad Y=L \backslash b \quad$ To solve $L Y=b$ for Y.

Now you have $U X=Y$ which you can solve using forward substitution. Do it on paper then, check you answer using MATLAB

$$
\text { type } \quad X=U \backslash Y \quad \text { To solve } U X=Y \text { for } X
$$

This the end of the LAB 4, follow the directions to close your diary file save your variables, edit your work, then send it to the TA.

