next up previous
Next: References and further studies Up: Exercises Previous: Exercise 2

Solution to Exercise 2

a) The transition matrix is $A = \left[ \begin{array}{rrr}
0.5&0.2&0.1 \\
0.3 &0.6&0.4 \\
0.2&0.2&0.5 \\
\end{array}
\right]
$

Let $x^{(0)} =
\begin{array}{r}
1\\
0\\
0\\
\end{array} $, then $ x^{(1) } =A x^{(0)} =
\begin{array}{r}
0.5\\
0.3\\
0.2\\
\end{array}$

And $ x^{(2) } =A x^{(3)}=
\begin{array}{r}
0.3300\\
0.4100\\
0.2600\\
\end{array}$

Hence the probability that the grandchild of a family of low income to be in high income level is 0.26 .

b) Since $A$ is a regular matrix, we need to find $ A^n $ for large $n$. Here is some powers of $A$ computed by using MATLAB:

$
A^{10}=
\left[ \begin{array}{rrr}
0.24490804170000 & 0.24490213680000 & 0.2...
....28571259860000 &0.28571259860000 & 0.28571850350000 \\
\end{array}
\right]
$

and $
A^{100}=
\left[ \begin{array}{rrr}
0.24489795918367 & 0.24489795918367 & 0....
...0.28571428571429 &0.28571428571429 & 0.28571428571429\\
\end{array}
\right]
$

This suggest that the steady-state vector can be approximate by

$
A^{100}=
\left[ \begin{array}{r}
0.245 \\
0.469 \\
0.288 \\
\end{array}
\right]
$

therefore, in long run, $29 \% $ of the population will be in in low income level.



Ali A. Daddel 2000-09-18