Solution;

Assume that the number of bikes entering each intersection is equal to the number of the bikes leaving the intersection. For each intersection, this fact can be shown by an equation. 

x4+120 = x1 + 250

 
 
x3 + 115 = x4 + 175

 
 
x2 + 630 = x3 + 390

 
 
x1 + 70 = x2 + 120
Rewrite this system of linear equations:
$\left\{ \begin{array}{rlrrrlrlrlr}-x_1 & & & & & +& x_4 &=&130 \\& & & & x...... - & x_3 & & &=&-240 \\x_1 &- &x_2 & & & & &=&50 \\\par\end{array}\right. $
The augmented matrix of this system is 
 
 

$ A=\left[ \begin{array}{rrrrr}-1& 0& 0 & 1& 130 \\0& 0& 1& -1& 60 \\0& 1& -1& 0& -240 \\1& -1& 0& 0&50\\\end{array} \right] $

The row reduced echelon form of this matrix is
 
 

$ A=\left[ \begin{array}{rrrrr}1& 0& 0 & -1& 130 \\0& 1& 0 & -1& -180 \\0& 0& 1& -1& 60 \\0& 0 & 0& 0& 0\\\end{array} \right] $
 
 

Rewrite this as a linear system :


 
 
\begin{displaymath}\left\{ \begin{array}{rlrrrlrlrlr}x_1 & = & x_4 & + & 130 \......4 & + & -180 \\x_3 & = & x_4 &+ & 60 \\\end{array}\right.\end{displaymath}

Since there is a free variable, this problem has many possible solutions, but x4 > 180.

As an example if x4= 400 the solution of the system will be


 
 
\begin{displaymath}\left\{ \begin{array}{rlrrrlrlrlr}x_1 & =530 \\x_2 & =220 \\x_3 & =460 \\\end{array}\right.\end{displaymath}


Ali A. Daddel

1999-11-28