## Champaign Problems

## Vicki Powers, Dept of Math, Emory University

Bruce Fest,<br>July 8, 2019

## Pre-Show Ad

Work started on a book-length project: Representations of Positive Polynomials

The idea: Gather together and organize results on "certificates of positivity" with some history. Put in enough background material and details so that it is useful for graduate students and non-experts.

Looking for suggestions, results that should be included (especially recent results), anyone who wants to read and comment on parts that are written...

## Timeline

# Hilbert, 1888 <br> Bernstein, 1915 <br> Pólya, 1928 <br> Haviland, 1936 

Motzkin, 1967

## Krivine, 1964

Berg et. al., 1979
Stengle, 1974

Handelman, 1988
CTC Wall, 1991

Choi, Lam, Rez, 1995
Powers, Reznick, 2001 PRSS, 2004

Scheiderer, 2000

## Bruce is the coolest mathematician I know! Why?

## Bruce is the coolest mathematician I know! Why?

- He has Erdös number 1


## Bruce is the coolest mathematician I know! Why?

- He has Erdös number 1
- which means I have Erdös number 2 (thanks, Bruce!)


## Bruce is the coolest mathematician I know! Why?

- He has Erdös number 1
- which means I have Erdös number 2 (thanks, Bruce!)
- He has both an Erdös number and a Bacon number.


## Bruce is the coolest mathematician I know! Why?

- He has Erdös number 1
- which means I have Erdös number 2 (thanks, Bruce!)
- He has both an Erdös number and a Bacon number.
- He inspired a beer!


## Bruce is the coolest mathematician I know! Why?

- He has Erdös number 1
- which means I have Erdös number 2 (thanks, Bruce!)
- He has both an Erdös number and a Bacon number.
- He inspired a beer!

Bruce is the coolest mathematician I know! Why?

- He has Erdös number 1
- which means I have Erdös number 2 (thanks, Bruce!)
- He has both an Erdös number and a Bacon number.
- He inspired a beer!


Bruce is the coolest mathematician I know! Why?

- He has Erdös number 1
- which means I have Erdös number 2 (thanks, Bruce!)
- He has both an Erdös number and a Bacon number.
- He inspired a beer!

and not some wimpy lager, an $8.2 \%$ double IPA!


## Higher Level Orderings on a Field

Hilbert's 17th Problem: If $f \in \mathbb{R}(X)$ is psd, then $f \in \sum \mathbb{R}(X)^{2}$. Solved by $E$. Artin in 1927, using the newly developed theory of ordered fields of Artin and Schreier.

For a field $F, P \subseteq F$ is (the positive cone of) an order on $F$ if $P \cdot P \subseteq P, P+P \subseteq P, P \cap-P=\{0\}, P \cup-P=F$. Equivalently, $P \subseteq F$ is an order if $\dot{P}$ is a subgroup of $\dot{F}$ of index 2 that is additively closed.

In the 1970's, Eberhard Becker developed a generalization: An ordering of higher level on $F$ is a subset $P \subseteq F$ such that $\dot{P}$ is an additively closed subgroup of $\dot{F}$ for which $\dot{F} / \dot{P}$ is finite cyclic. $\dot{P}$ additively closed implies $-1 \notin P$, hence $\dot{F} / \dot{P}$ has order $2 n$. The level of $P$ is $n$. Orders in $F$ are level 1 orderings.

## Artin-Schreier Theory

A field $F$ is (formally) real if $-1 \notin \sum F^{2}$.

## Artin-Schreier Theorem

$F$ is real iff $F$ admits an order. Furthermore, if $F$ is real then $\sum F^{2}=\cap P$, the intersection of all orders in $F$.

Artin's solution to Hilbert's 17 th Problem: Showed that $F \subseteq \mathbb{R}$ a subfield with exactly one order, then for any $f \in F(X)$ such that $f(x) \geq 0$ at every point at which it is defined, then $f$ is in every order of $F(X)$. Used Sturm's Theorem for counting the number of real roots of a polynomial.

In 1978, Becker proved a higher level version:

## Higher Level Artin-Schreier Theorem

The following are equivalent for a field $F$ and any $n \in \mathbb{N}$.
(1) $F$ has an ordering of level $n$.
(2) $-1 \notin \sum F^{2 n}$.
(3) $F$ is real.

If $F$ is real, then $\sum F^{2 n}=\cap P$, where the intersection is over all orderings of level dividing $n$.

## The Champagne Problem

Becker used valuation theory + higher level Artin-Scheirer to show that the following is true in a real field $F$ for any $n \in \mathbb{N}$ :

$$
\left\{\left.\frac{r(s+q)}{t+q} \right\rvert\, r, s, t \in \mathbb{Q}^{+}, q \in \sum F^{2}\right\} \subseteq \sum F^{2 n}
$$

## The Champagne Problem

Becker used valuation theory + higher level Artin-Scheirer to show that the following is true in a real field $F$ for any $n \in \mathbb{N}$ :

$$
\left\{\left.\frac{r(s+q)}{t+q} \right\rvert\, r, s, t \in \mathbb{Q}^{+}, q \in \sum F^{2}\right\} \subseteq \sum F^{2 n}
$$

As an example,

$$
B(t):=\frac{1+t^{2}}{2+t^{2}} \in \sum \mathbb{Q}(t)^{2 n}
$$

for all $n \in \mathbb{N}$. Becker's proof is non-constructive, and he proposed the following problem: Find an explicit formula for writing $B(t)$ in $\sum \mathbb{Q}(t)^{2 n}$. He offered a case of champagne for anybody who could solve this. Thus was born the Champagne Problem.

Becker also showed that for any real field $F$ and $n \in \mathbb{N}$,

$$
\left(\sum F^{2}\right)^{n} \subseteq \sum F^{2 n}
$$

This is highly non-obvious!
More generally, Becker showed that there are identities

$$
\left(x_{1}^{2 n}+\cdots+x_{k}^{2 n}\right)^{m}=f_{1}^{2 n m}+\cdots+f_{r}^{2 n m}
$$

where $f_{i} \in \mathbb{Q}\left(x_{1}, \ldots, x_{k}\right)$. When $n=1$, these are the Hilbert Identities.

Back to the Champagne Problem. What did Bruce do?

We have

$$
B(t)=\frac{1+t^{2}}{2+t^{2}}=\frac{\left(1+t^{2}\right)\left(2+t^{2}\right)^{2 n-1}}{\left(2+t^{2}\right)^{2 n}}
$$

thus if we can write $\left(1+t^{2}\right)\left(2+t^{2}\right)^{n-1}$ and $\left(2+t^{2}\right)^{n}$ as sums of $2 n$-th powers of elements of $\mathbb{Q}(X)$, their product is such a sum and can be divided by $\left(2+t^{2}\right)^{2 n}$ yielding a formula in $\sum \mathbb{Q}(X)^{2 n}$.

We have

$$
B(t)=\frac{1+t^{2}}{2+t^{2}}=\frac{\left(1+t^{2}\right)\left(2+t^{2}\right)^{2 n-1}}{\left(2+t^{2}\right)^{2 n}}
$$

thus if we can write $\left(1+t^{2}\right)\left(2+t^{2}\right)^{n-1}$ and $\left(2+t^{2}\right)^{n}$ as sums of $2 n$-th powers of elements of $\mathbb{Q}(X)$, their product is such a sum and can be divided by $\left(2+t^{2}\right)^{2 n}$ yielding a formula in $\sum \mathbb{Q}(X)^{2 n}$.

In Bruce's paper Uniform Denominators in Hilbert's 17th Problem, Math. Zeit. 1995, using the above and the Hilbert Identities, after several pages of calculations, the following formula appears

$$
B(t):=\frac{2^{4 n-2}}{n(n+2)^{2}\binom{2 n}{n}} \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} \lambda_{j}\left(\frac{L_{i}(\sqrt{2}, t) L_{j}(\sqrt{2}, t)}{2+t^{2}}\right)^{2 n},
$$

where $\lambda_{j}=3 n-(n+1) \cos (2 j \pi /(n+2))$ and
$L_{i}(x, y)=(\cos (2 j \pi /(n+2)) x+\sin (2 j \pi /(n+2)) y)$.
This is an explicit formula for writing $B(t)$ in $\sum \mathbb{R}(t)^{2 n}$, i.e., a solution to the Champagne Problem over $\mathbb{R}$. Unfortunately, this method does not lead to a solution over $\mathbb{Q}$. However, it was close enough that Becker awarded Bruce a bottle of champagne.

At the 1994 Joint Math Meeting, Bruce talked on this work at a special session and was given his champagne (by proxy).


## THANK YOU Bruce

for many years of collaboration, support, friendship, and laughs
Thanks to the audience for listening.


н123*าто

