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Bruce like’s polytopes too!!



A k-lattice polytope is a lattice polytope containing exactly k lattice
points in its interior. Here are all 2-lattice gons and 3-lattice gons.



A question around Bruce’s flavor

Given m Linear Inequalities with rational coefficients, they define a
polytope.

a1,1x1 + a1,2x2 + · · ·+ a1,dxn ≤ b1

a2,1x1 + a2,2x2 + · · ·+ a2,dxn ≤ b2

...

am,1x1 + ak,2x2 + · · ·+ ak,dxn ≤ bm

If we want exactly k -lattice points inside, what is the smallest number
of constraints m one really needs?
Let us start with k = 0. First, I want not a single lattice point inside!
Clearly if m = 1,2 that is not enough!!
Polyhedra with no interior integral points are called lattice-free. The
interest in lattice-free polyhedra is motivated by applications in
mixed-integer optimization.



Jean-Paul Doignon, David E. Bell & Herbert Scarf (1970’s)

They found the answer...



Theorem of Doignon-Bell-Scarf

I Theorem Let A be a m × n matrix and b a vector of Qm. If the
problem PA(b) = {x : Ax ≤ b, x ∈ Zn} has no integer solution,
then there is a subset S of the m rows of A of cardinality no more
than 2n, so that the smaller system has no integer solution either.



A proof from the book 1



A proof from the book 2



A proof from the book 3



Next case...

If one wants to have exactly
k ≥ 1 integral points inside

the polytope,
how many hyperplanes

does one need to enclose
them ??



Next case...

If one wants to have exactly
k ≥ 1 integral points inside

the polytope,
how many hyperplanes

does one need to enclose
them ??



MAIN THEOREM:

Theorem (Iskander Aliev, JDL, Quentin Louveaux)
Let A be a m × n matrix and b a vector of Qm. and Let n, k be
non-negative integers.

There exists a magic number c(k ,n), depending only on k and n,
such that If the polytope PA(b) = {x : Ax ≤ b} has exactly k integral
solutions, then a subset of the inequalities of Ax ≤ b, of cardinality no
more than c(k ,n), has exactly the same k integer solutions as PA(b).

ORIGINAL DOIGNON-BELL-SCARF is case of k = 0.
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Corollary
For n, k non-negative integers, there exists a magic number c(k ,n),
determined by k and n, such that

I For any system of inequalities {x : Ax ≤ b} in Rn, if every subset
of the constraints of cardinality c(k ,n) has at least k integer
solutions, then the entire system of inequalities must have at
least k integral solutions.

I Let (Xi)i∈Λ be a collection of convex sets in Rn, where at least
one of these sets is compact.
If exactly k integer points are in

⋂
i∈Λ Xi , then there is a

subcollection of size less than or equal to c(n, k) with exactly the
same integer points in their intersection.

But, WHAT IS THE MAGIC NUMBER c(n, k)?

Well, when k = 0 we knew c(0,n) = 2n.



Corollary
For n, k non-negative integers, there exists a magic number c(k ,n),
determined by k and n, such that

I For any system of inequalities {x : Ax ≤ b} in Rn, if every subset
of the constraints of cardinality c(k ,n) has at least k integer
solutions, then the entire system of inequalities must have at
least k integral solutions.

I Let (Xi)i∈Λ be a collection of convex sets in Rn, where at least
one of these sets is compact.
If exactly k integer points are in

⋂
i∈Λ Xi , then there is a

subcollection of size less than or equal to c(n, k) with exactly the
same integer points in their intersection.

But, WHAT IS THE MAGIC NUMBER c(n, k)?

Well, when k = 0 we knew c(0,n) = 2n.



Corollary
For n, k non-negative integers, there exists a magic number c(k ,n),
determined by k and n, such that

I For any system of inequalities {x : Ax ≤ b} in Rn, if every subset
of the constraints of cardinality c(k ,n) has at least k integer
solutions, then the entire system of inequalities must have at
least k integral solutions.

I Let (Xi)i∈Λ be a collection of convex sets in Rn, where at least
one of these sets is compact.
If exactly k integer points are in

⋂
i∈Λ Xi , then there is a

subcollection of size less than or equal to c(n, k) with exactly the
same integer points in their intersection.

But, WHAT IS THE MAGIC NUMBER c(n, k)?

Well, when k = 0 we knew c(0,n) = 2n.



MAIN THEOREM 2: Bound for c(n, k)

I Theorem 2 For n, k non-negative integers

c(k ,n) ≤ d2(k + 1)/3e2n − 2d2(k + 1)/3e+ 2

and the bound is tight for c(0,n) and c(1,n).

I Example For c(1,2) = 6 and c(1,3) = 14, but c(3,2) = 6 (but 8
is our bound!)

I OPEN PROBLEM Find the exact value of the c(k ,n) for k ≥ 2.
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