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Bruce like’s polytopes too!!

CLEAN LATTICE TETRAHEDRA
BRUCE REZNICK

ABSTRACT. A clean lattice tetrahedron is a non-degenerate tetrahedron with the
property that the only lattice points on its boundary are its vertices. We present
some new proofs of old results and some new results on clean lattice tetrahedra, with
an emphasis on counting the number of its interior lattice points and on computing
its lattice width.

1. INTRODUCTION AND OVERVIEW

Let T =T(v1,...,v) = conv(vy,...,v,) be anon-degenerate simplex with vertices
v; € Z". We say that T is clean if there are no non-vertex lattice points on the
boundary of T. Let 4(T) = #{int(T) N Z"} denote the number of lattice points in
the interior of a clean lattice simplex T'. If ¢(T) = k, then T is called a k-point lattice
simplex. If i(T) = 0, then T is called empty. This paper is mainly concerned with
clean tetrahedra.



A k-lattice polytope is a lattice polytope containing exactly k lattice
points in its interior. Here are all 2-lattice gons and 3-lattice gons.
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A question around Bruce’s flavor

Given m Linear Inequalities with rational coefficients, they define a
polytope.

a1 Xy +aipXe + -+ a,gXn < by

a21X1 + 822Xe + -+ + 82,4Xn < b2

am,1 X1 + akoXe + -+ + @k,aXn < bm

If we want exactly k-lattice points inside, what is the smallest number
of constraints m one really needs?

Let us start with kK = 0. First, | want not a single lattice point inside!
Clearly if m = 1,2 that is not enough!!

Polyhedra with no interior integral points are called lattice-free. The
interest in lattice-free polyhedra is motivated by applications in
mixed-integer optimization.



Jean-Paul Doignon, David E. Bell & Herbert Scarf (1970’s)

They found the answer...



Theorem of Doignon-Bell-Scarf

» Theorem Let Abe a m x nmatrix and b a vector of Q™. If the
problem P4(b) = {x : Ax < b, x € Z"} has no integer solution,
then there is a subset S of the m rows of A of cardinality no more
than 2", so that the smaller system has no integer solution either.
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A proof from the book 1

DA



A proof from the book 2

DA



A proof from the book 3

DA



Next case...

If one wants to have exactly
k > 1 integral points inside
the polytope,

how many hyperplanes

does one need to enclose
them ?7?
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Let A be a m x n matrix and b a vector of Q™. and Let n, k be
non-negative integers.
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There exists a magic number c(k, n), depending only on k and n,
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solutions, then a subset of the inequalities of Ax < b, of cardinality no
more than c(k, n), has exactly the same k integer solutions as Px(b).
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ORIGINAL DOIGNON-BELL-SCAREF is case of kK = 0.



Corollary
For n, k non-negative integers, there exists a magic number c(k, n),
determined by k and n, such that

» For any system of inequalities {x : Ax < b} in R”, if every subset
of the constraints of cardinality c(k, n) has at least k integer
solutions, then the entire system of inequalities must have at
least k integral solutions.
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If exactly k integer points are in ;.5 X, then there is a
subcollection of size less than or equal to ¢(n, k) with exactly the
same integer points in their intersection.
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But, WHAT IS THE MAGIC NUMBER c¢(n, k)?

Well, when k = 0 we knew ¢(0, n) = 2".



MAIN THEOREM 2: Bound for ¢(n, k)

» Theorem 2 For n, k non-negative integers
c(k,n) < [2(k+1)/312" —2[2(k+1)/3] + 2
and the bound is tight for ¢(0, n) and ¢(1, n).



MAIN THEOREM 2: Bound for ¢(n, k)

» Theorem 2 For n, k non-negative integers
c(k,n) < [2(k+1)/312" —2[2(k+1)/3] + 2
and the bound is tight for ¢(0, n) and ¢(1, n).

» Example For c(1,2) =6 and ¢(1,3) = 14, but ¢(3,2) = 6 (but 8
is our bound!)

» OPEN PROBLEM Find the exact value of the c(k, n) for k > 2.







