# On an Unpublished Article by Bruce Reznick 

Greg Blekherman<br>Georgia Tech

Conference in Honor of Bruce Reznick

Things in Common


## The Paper in the Title

"On Hilbert's Construction of Positive Polynomials"

Timeline:

Uploaded to Arxiv on July 14, 2007.

## The Paper in the Title

"On Hilbert's Construction of Positive Polynomials"

Timeline:

Uploaded to Arxiv on July 14, 2007.

March 27-29, 2009 AMS Sectional Meeting at UIUC, Special session organized by Bruce and Vicki.

## The Paper in the Title

"On Hilbert's Construction of Positive Polynomials"

Timeline:

Uploaded to Arxiv on July 14, 2007.

March 27-29, 2009 AMS Sectional Meeting at UIUC, Special session organized by Bruce and Vicki.

May 9-11, 2009 FRG Meeting at MIT organized by Pablo Parrilo

## Bruce's Paper

Clear explanation and generalization of Hilbert's Method.
Take two cubics $F$ and $G$ intersecting transversely in 9 real points.

Consider 8 of the points. There are $28-8 \cdot 3=4$ sextics double vanishing at the 8 points.

Therefore there is a sextic $R$ double-vanishing on the 8 points, which does not vanish on the 9-th point (it is not spanned by $F^{2}$, $G^{2}$ and $\left.F G\right)$.

Then $F^{2}+G^{2}+\epsilon R$ will be nonnegative but not a sum of squares.

## My Inspiration

Consider the cones $P_{3,6}$ and $\Sigma_{3,6}$. Let $v \in \mathbb{R}^{3}$ be a point and consider faces $P_{3,6}(v)$ and $\Sigma_{3,6}(v)$ of nonnegative forms and sums of squares vanishing on $v$.

Then $\operatorname{dim} P_{3,6}(v)=\operatorname{dim} P_{3,6}-3 \quad$ and $\quad \operatorname{dim} \Sigma_{3,6}(v)=\operatorname{dim} \Sigma_{3,6}-3$.

Now consider doing this for 7 points:

$$
\operatorname{dim} P_{3,6}^{\prime}=28-7 \times 3=7
$$

but sums of squares come from the $10-7=3$ sextics vanishing on the 7 points, so

$$
\operatorname{dim} \Sigma_{3,6}^{\prime} \leq\binom{ 3+1}{2}=6
$$

## Switching to Varieties

Instead of forms of arbitrary even degree, we can consider quadratic forms on varieties, but using the Veronese embedding!

## Example:

$$
\nu_{2}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5} \quad \text { via } \quad \nu_{2}([x: y: z])=\left[x^{2}: y^{2}: z^{2}: x y: x z: y z\right]
$$

Forms of degree $2 d$ on $X$ correspond precisely to quadratic forms on $\nu_{d}(X)$. So we have:

$$
P_{X, 2 d}=P_{\nu_{d}(X)} \quad \text { and } \quad \Sigma_{X, 2 d}=P_{\nu_{d}(X)}
$$

## Projecting Away from Points

Let $X$ be a projective variety, and let $v$ be a generic point of $X$.
Let $X_{v}$ be the projection away from $v$.

Key Observation: $\Sigma_{X_{v}}$ is the face $\Sigma_{X}(v)$ of the cone $\Sigma_{X}$, corresponding to forms vanishing on $v$, and $P_{X_{v}} \subseteq P_{X}(v)$.

$$
P_{X_{v}} \subseteq P_{X}(v)=\Sigma_{X}(v)=\Sigma_{X_{v}}
$$

Conclusion: Projection away from a point preserves equality between cones.

We also have

$$
\operatorname{codim} X_{v}=\operatorname{codim} X-1 \quad \text { and } \quad \operatorname{deg} X_{v}=\operatorname{deg} X-1
$$

## The Finale

Projection away successively from $\operatorname{codim} X-1$ many generic points, we obtain a hypersurface $Y$ of degree at least 3 .

$$
\operatorname{deg} X \geq \operatorname{codim} X+1
$$

And if

$$
\operatorname{deg} X>\operatorname{codim} X+1
$$

then $\operatorname{deg} Y \geq 3$.

Since the ideal of $Y$ has no forms of degree 2, elements of $\Sigma_{Y}$ are globally nonnegative quadratic forms, while elements of $P_{Y}$ are quadratic forms nonnegative on $Y$. Therefore,

$$
\Sigma_{Y} \subsetneq P_{Y} \quad \text { and } \quad \Sigma_{X} \subsetneq P_{X}
$$

## THANK YOU!

