Sixty-Four Curves of Degree Six

Bernd Sturmfels

Happy Sixty-Six to Bruce

Paper with Nidhi Kaihnsa, Mario Kummer, Daniel Plaumann and Mahsa Sayyary

Hilbert's 16th Problem

Classify all real algebraic curves of degree d in the plane $\mathbb{P}^2_{\mathbb{R}}$.

Assume that the complex curve (Riemann surface) is smooth.

Complete answers are known up to d = 7, due to Harnack, Hilbert, Rohn, Petrovsky, Rokhlin, Gudkov, Nikulin, Kharlamov, Viro,

Two curves C_1 and C_2 have same *topological type* if some homeomorphism of $\mathbb{P}^2_{\mathbb{R}} \to \mathbb{P}^2_{\mathbb{R}}$ restricts to a homeo $C_1 \to C_2$.

Finer notion of equivalence comes from the *discriminant* Δ :

Points on Δ are singular curves. The *rigid isotopy types* are the connected components of the complement of Δ . Two curves C_1 and C_2 in the same rigid isotopy class have same topological type

... the converse is not true.

Sextics

Our paper: d = 6

Theorem (Rokhlin-Nikulin Classification)

The discriminant of plane sextics is a hypersurface of degree 75 in $\mathbb{P}^{27}_{\mathbb{R}}$. Its complement has 64 connected components. The 64 rigid isotopy types are grouped into 56 topological types, with number of ovals ranging from 0 to 11. The distribution equals

# ovals	0	1	2	3	4	5	6	7	8	9	10	11	all
Rigid isotopy	1	1	2	4	4	7	6	10	8	12	6	3	64
Topological	1	1	2	4	4	5	6	7	8	9	6	3	56

The 56 types are seen in our poset.

Rokhlin (1978) carried out the classification. Nikulin (1980) completed the proof.

14 Are Dividing

The following eight types consist of two rigid isotopy classes: (41) (21)2 (51)1 (31)3 (11)5 (81) (41)4 9. The six maximal types necessarily divide their Riemann surface: (91)1 (51)5 (11)9 (61)2 (21)6 (hyp).

Corollary

Of the 56 topological types of smooth plane sextics, 42 types are non-dividing, six are dividing, and eight can be dividing or non-dividing. This accounts for all 64 rigid isotopy types in $\mathbb{P}^{27}_{\mathbb{R}} \setminus \Delta$.

Robinson Sextic

Consider this net of sextics: $a(x^{6}+y^{6}+z^{6}) + bx^{2}y^{2}z^{2} + c(x^{4}y^{2}+x^{4}z^{2}+x^{2}y^{4}+x^{2}z^{4}+y^{4}z^{2}+y^{2}z^{4}).$

For (a:b:c) = (1:3:-1) this a nonnegative sextic that is not SOS.

The discriminant of this net is the following curve of degree 75 in $\mathbb{P}^2_{\mathbb{R}}$:

 $\Delta \ = \ a^3(a+c)^6(3a-c)^{18}(3a+b+6c)^4(3a+b-3c)^8(9a^3-3a^2b+ab^2-3ac^2-bc^2+2c^3)^{12}$

(a:b:c) = (19:60:-20) gives our sextic for the ten ovals type 10d.

Polynomials

Proposition

Each of the 64 rigid isotopy types is realized by a sextic in $\mathbb{Z}[x, y, z]_6$ whose coefficients have abs. value $\leq 1.5 \times 10^{38}$.

and many more representatives

Eleven Ovals

Hilbert (1891) argued that type **(51)5** does not exist. Gudkov (1969) showed that Hilbert had made a mistake.

(91)1 d
$$(1941536164(yz-x^2)(60(x+z)z - (6x+6z-y)^2) + 118(10x+8y+3z)(12x+32y+z)(12x-32y-z)(10x-8y-3z))(x^2 - yz) - y^6$$

(11)9 d
$$(340291(yz - x^2)((x + 2z)z - 2(y - 2z)^2) + (10x - 8y - 3z)(12x - 27y - z)(12x + 28y + z)(10x + 7y + 3z))(x^2 - yz) + y^6$$

SexticClassifier

... is the name of our Mathematica code. Its input is a sextic $f \in \mathbb{Z}[x, y, z]_6$. Its output is the topological type of $V_{\mathbb{R}}(f)$.

We computed various empirical distributions. Here is one experiment with 1,500,000 samples:

Table: Topological types sampled from the U(3)-invariant distribution

For the uniform distribution on $\{-10^{12}, \ldots, 10^{12}\}$ we obtained

1	2	3	(11)	Ø	4
77.51%	18.24%	2.09%	1.44%	0.65%	0.06%

Conclusion: Most types never occur when sampling at random!!

Transitions

Theorem

For curves of even degree, every discriminantal transition between rigid isotopy types is one of the following: shrinking an ovals, fusing two ovals, and turning an oval inside out.

Figure: Type (21)2d transitions into Type (21)2nd by turning inside out.

Transitions

Theorem (Itenberg 1994)

For each edge in our poset, both combinatorial transitions (shrinking or fusing) can be realized by a singular curve with exactly one ordinary node.

Bitangents and Flexes

A general sextic in $\mathbb{P}^2_{\mathbb{C}}$ has 324 bitangents and 72 inflection points.

Conjecture

The number of real bitangents of a smooth sextic in $\mathbb{P}^2_{\mathbb{R}}$ ranges from 12 to 306. The lower bound is attained by curves of types 0, 1, (11) and (hyp). The upper bound is attained by (51)5.

Transitions:

(411) C has an undulation point.

(222) C has a tritangent line.

(321) C has a flex-bitangent.

Theorem

The loci (222) and (321) are irred. hypersurfaces in \mathbb{P}^{27} of degrees 1224 and 306. They form the discriminant for bitangent lines.

Experiments

Type	Flex	Eigenvec	Bitang	Rank	Type	Flex	Eigenvec	Bitang	Rank
0	0	3-31	12	3	(11)5nd	6-16	29-31*	116 - 122	16
1	0-12	3-31*	12 - 56	3	(11)5d	8-16	$25 - 31^*$	120 - 128	16
(11)	0-14	$11 - 31^*$	12-66	10	7	4-14	$25 - 31^*$	96-124	14
2	0-8	5-31*	12 - 52	13	(71)	20-24	29	108	16
(21)	0-10	$7 - 31^{*}$	16 - 86	14	(61)1	20 - 22	25	104 - 214	15
(11)1	2-6	$7 - 31^{*}$	20-66	15	(51)2	22	25 - 31	226 - 228	15
3	0-8	7-31*	24 - 94	13	(41)3	20	23-25	154 - 214	14
(hyp)	0-14	$11 - 31^*$	12 - 52	13	(31)4	22	21	162 - 214	14
(31)	2-10	$19 - 31^*$	24-90	13	(21)5	16 - 20	29-31	168	13
(21)1	0-6	$11 - 31^*$	28-72	14	(11)6	12 - 14	$27 - 31^*$	172 - 176	14
(11)2	0-4	$11 - 31^*$	32-82	13	8	0 - 12	$23 - 31^*$	124 - 142	13
4	0-2	$11 - 31^*$	36-54	11	(81)nd	18 - 22	23	122 - 196	14
(41)nd	14 - 16	$21 - 31^*$	48-90	16	(81)d	18 - 24	29	124 - 132	12
(41)d	12 - 14	$27 - 31^{*}$	98-104	14	(71)1	14 - 18	21-31	104 - 240	13
(31)1	2-8	$15 - 31^*$	40-86	14	(61)2	18 - 20	23-31	228 - 276	13
(21)2nd	10 - 16	$17 - 31^*$	54-82	20	(51)3	22	25	192 - 254	13
(21)2d	8-16	$19 - 31^{*}$	60-70	17	(41)4nd	14 - 16	25	188 - 220	9
(11)3	8-12	$19 - 31^*$	48-94	14	(41)4d	18	25	194 - 230	11
5	2-10	$19 - 31^{*}$	52 - 112	15	(31)5	20	25 - 31	198 - 260	13
(51)	12 - 16	$21 - 31^*$	54 - 64	14	(21)6	20	23-31	242 - 258	15
(41)1	22	$27 - 31^*$	90-104	14	(11)7	14 - 16	29-31	216	14
(31)2	14 - 18	$27 - 31^*$	126 - 130	14	9nd	8-16	$25 - 31^*$	162 - 172	15
(21)3	16	$27 - 31^*$	112 - 116	14	$_{\rm 9d}$	4-16	29-31*	156	15
(11)4	6-10	$25 - 31^*$	76-106	15	(91)	18 - 22	23	124 - 236	13
6	10 - 12	23-31*	78 - 108	14	(81)1	16 - 20	23-31	162 - 240	14
(61)	16	$27 - 31^*$	78-88	14	(51)4	20	27	232 - 234	10
(51)1nd	16	23 - 25	110 - 124	15	(41)5	18 - 20	27 - 31	232	10
(51)1d	20-24	29	136	16	(11)8	14 - 18	25 - 31	142 - 210	13
(41)2	16 - 20	29-31	126 - 128	14	10	0-24	$21 - 31^*$	192	12
(31)3nd	12	$25 - 31^*$	124 - 148	15	(91)1	18 - 22	25 - 31	200 - 284	14
(31)3d	20-22	29	132	16	(51)5	20 - 22	25-31	276 - 306	10
(21)4	14 - 20	27-31*	138 - 142	15	(11)9	16 - 20	25-31	174 - 250	14

Critical Points on the Sphere

A sextic f can have as many as 20 local maxima on the unit sphere \mathbb{S}^2 . The picture shows one with $62 = 2 \cdot 31$ critical points. Its Morse complex is the icosahedron, with f-vector (12, 30, 20).

The critical points are the eigenvectors of $f_{.14/18}$

Rank

The *rank* of a polynomial $f \in \mathbb{R}[x, y, z]_d$ is the minimum number of summands in a representation

$$f(x,y,z) = \sum_{i=1}^r \lambda_i (a_i x + b_i y + c_i z)^d.$$

For a generic sextic *f*, the complex rank is 10, and the real rank is between 10 and 19 (Michalek-Moon-St-Ventura 2017). Computing real ranks exactly is very difficult.

We applied the numerical software tensorlab to our 64 curves:

Type	Flex	Eigenvec	Bitang	Rank	Type	Flex	Eigenvec	Bitang	Rank
0	0	3-31	12	3	(11)5nd	6-16	$29 - 31^*$	116 - 122	16
1	0-12	3-31*	12 - 56	3	(11)5d	8-16	25-31*	120 - 128	16
(11)	0-14	$11 - 31^*$	12 - 66	10	7	4-14	$25 - 31^*$	96-124	14
2	0-8	$5 - 31^{*}$	12 - 52	13	(71)	20-24	29	108	16
(21)	0-10	$7 - 31^*$	16 - 86	14	(61)1	20-22	25	104 - 214	15
(11)1	2-6	$7 - 31^{*}$	20-66	15	(51)2	22	25 - 31	226-228	15
· · ·					(41)3	20	23-25	154 - 214	14
(41)nd	14 - 16	$21 - 31^*$	48-90	16	(31)4	22	21	162 - 214	14
(41)d	12 - 14	$27 - 31^*$	98-104	14	(21)5	16 - 20	29-31	168	13
(31)1	2-8	$15 - 31^*$	40-86	14	(11)6	12 - 14	$27 - 31^*$	172 - 176	14
(21)2nd	10 - 16	$17 - 31^*$	54-82	20	8	0-12	$23 - 31^{*}$	124 - 142	13
(21)2d	8-16	$19 - 31^*$	60-70	17	(81)nd	18 - 22	23	122 - 196	14
(11)3	8-12	$19 - 31^{*}$	48-94	14	(81)d	18 - 24	29	124 - 132	12
ົ 5໌	2-10	$19 - 31^{*}$	52-112	15	(71)1	14 - 18	21-31	104-240	13
(51)	12 - 16	$21 - 31^*$	54 - 64	14	(61)2	18 - 20	23-31	228-276	13 15
(41)1	22	$27 - 31^*$	90 - 104	14	(51)3	22	25	192 - 254	13 15

Quartic Surfaces

Our 64 sextics represent K3 surfaces over \mathbb{Q} .

The two basic models for algebraic K3 surfaces are quartic surfaces in \mathbb{P}^3 and double-covers of \mathbb{P}^2 branched at a sextic curve. A real K3 surface is orientable and has ≤ 10 connected components. Its Euler characteristic is between -18 and 20. (Silhol 1989)

Can construct quartic surfaces with desired topology from our curves:

Example

Let F be the quartic

 $\frac{100w^4 - 12500w^2x^2 + 104x^4 - 12500w^2y^2 + 1640x^2y^2 + 1550y^4 + 12500w^2yz}{-75x^2yz - 1552y^3z + 9375w^2z^2 - 487x^2z^2 - 1533y^2z^2 + 354yz^3 + 314z^4}.$

The surface $V_{\mathbb{R}}(F)$ is connected of genus 10, so $\chi = 20$.

16/18

Example (Rohn 1913)

Let $G = \tau (s_1^2 - 6s_2)^2 + (s_1^2 - 4s_2)^2 - 64s_4$, where s_i is the *i*th elementary symmetric polynomial in x, y, z, w and $\tau = \frac{16\sqrt{10}-20}{135}$. Then $V_{\mathbb{R}}(G)$ consists of 10 spheres, so $\chi = -18$.

Conclusion

The geometry and topology of real algebraic varieties is a beautiful subject, with many great results, especially from the Russian school.

We seek to connect this to current problems and developments in **Applied Algebraic Geometry**. This requires *computational and experimental work* with polynomials. We studied explicit sextics like

 $(1941536164(yz-x^2)(60(x+z)z - (6x+6z-y)^2) + \\118(10x+8y+3z)(12x+32y+z)(12x-32y-z)(10x-8y-3z))(x^2-yz) - y^6$

Q: What does the **real** picture look like for this curve? **A**: (91)1 d

Many Thanks, Bruce

for teaching us how to get real !!

