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Abstract. We investigate the semigroup of integer points inside a con-
vex cone. We extend classical results in integer linear programming to
conic integer programming. We show that the semigroup associated with
nonpolyhedral cones can sometimes have a notion of finite generating set.
We show this is true for the cone of positive semidefinite matrices (PSD)
and the second order cone (SOC). Both cones have a finite generating
set of integer points, similar in spirit to Hilbert bases, but require the
action of a finitely generated group. We also extend notions of total dual
integrality, Gomory-Chvátal closure, and Carathéodory rank to integer
points in arbitrary cones.
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1 Introduction

A semigroup S is a subset of Zn that contains 0 and is closed under addition.
Given a convex cone C ⊆ Rn, the integer points SC := C ∩Zn form a semigroup
which we will call the conical semigroup of C. In particular, given any compact
convex body K ⊆ Rn, the integer points cone(K × {1}) ∩ Zn+1 form a conical
semigroup. Conical semigroups appear not just in optimization [1,6], but also
in algebra and number theory [2,3]. Given a convex cone C ⊆ RN for N ≥ 1,
we say a subset B ⊆ SC is a integral generating set of SC if for any s ∈ SC

there exist b1, . . . , bm ∈ B and c1, . . . , cm ∈ Z≥0 such that s =
∑m

i=1 cibi, for
some m ≥ 1. Furthermore, we call B a conical Hilbert basis if B is an inclusion-
minimal integral generating set.
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When the defining cone C is polyhedral and pointed, there is abundant liter-
ature on the topic. It is well-known that we have a unique finite Hilbert basis in
this case [11,20]. Historically, Hilbert bases have been fundamental in the the-
ory and algorithms of combinatorial optimization. For example, determining if
a rational system Ax ≤ b is totally dual integral (TDI) is equivalent to checking
if, for every face F of the polyhedron P := {x : Ax ≤ b}, the rows of A which
are active in a face F form a Hilbert basis for cone(F )[20].

It is natural to ask, what properties transfer from polyhedral cones to ar-
bitrary convex cones? For instance, do we preserve any notion of finiteness in
generating sets for semigroups when we relax the polyhedral condition and instead
consider general conical semigroups? Are there Hilbert bases for general cones?
This paper discusses finite generation for conical semigroups and extends the
polyhedral cone theory of Hilbert bases to non-polyhedral convex cones. Our
main results will pertain to the semigroups arising from the cone of positive
semi-definite matrices and the second order. Both cones play a key role in mod-
ern optimization [4,5]. We also discuss some applications of our non-polyhedral
point of view.

In what follows, we denote GL(N,Z) := {U ∈ ZN×N : |det(U)| = 1}. Here
is a new notion of finite generation for conical semigroups.

Definition 1. Given a conical semigroup SC ⊂ ZN , we call it (R,G)-finitely
generated if there is a finite subset R ⊆ SC and a finitely generated subgroup
G ⊆ GL(N,Z) acting on SC such that

1. SC is invariant under the group action, G · SC = SC , and
2. every element s ∈ SC can be represented as

s =
∑
i∈K

λigi · ri

for ri ∈ R, gi ∈ G, and λi ∈ Z≥0, and where K is a finite index set.

Note that when C is a (pointed) rational polyhedral cone, then the conical
semigroup SC = C ∩ ZN is (R,G)-finitely generated by R, its Hilbert basis,
and G, the trivial group {IN}. Similarly, note that if SC is an (R,G)-finitely
generated semigroup, then ∪r∈RG · r is an integral generating set of SC , which
is a superset of a conical Hilbert basis. We call R the set of roots of SC , and
∪r∈RG · r the set of generators for SC .

While a non-polyhedral cone cannot be finitely generated in the usual sense,
using a possibly infinite (finitely generated) group G allows us to extend our
understanding beyond the polyhedral case. Because the possibly infinite genera-
tors for SC can be obtained by group action G on a finite set R and G is finitely
generated, this allows for the possibility of algorithmic methods. The well-known
Krein-Milman theorem states that any point in a closed pointed cone C can be
generated by extreme rays, denoted by ext(C) [4]. When we restrict to the con-
ical semigroup SC and non-negative integer combinations, the primitive integer
point on the extreme rays of C must be contained in the set of generators of SC ,
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where an integer point x = (x1, . . . , xN ) ∈ ZN primitive if gcd(x1, . . . , xN ) = 1.
We call the integer points of SC on the extreme rays of C extreme points, denoted
by ext(SC) := {y : y ∈ ext(C) ∩ ZN}. However, as in the polyhedral case, the
generators will often include extra non-extreme boundary points or even interior
points. We provide the following definition of sporadic points that cannot have
an extreme point subtracted from them and still remain within the cone.

Definition 2. The sporadic points in SC = C ∩ZN are defined to be the points
x ∈ SC such that there does not exist y ∈ ext(SC) such that x− y ∈ SC .

If x ∈ S is sporadic, then x cannot be written as an integer conical combination
of extreme points (even though it can be written as a real combination of them).
From the definition of sporadic points, we know that all points x ∈ S can be
written as an integer conical combination of primitive extreme points and one
sporadic point. To show that a semigroup is (R,G)-finitely generated, it is suf-
ficient to show that the set of primitive extreme points and sporadic points are
finite or can be obtained from a finitely generated group G that acts on a finite
set of roots, R.

The two convex cones of interest in this work are positive semidefinite cone
(PSD) and second-order cone (SOC). In Sections 2 and 3 of this paper, we will
present the following two main results pertaining to integer points in the PSD
cone Sn+(Z), and those in the SOC SOC(n) ∩ Zn.

Theorem 1. The conical semigroup of the cone of positive semidefinite ma-
trices, Sn+(Z), is (R,G)-finitely generated by G ∼= GL(n,Z) where G acts on
X ∈ Sn+(Z) by X 7→ UXUT for each U ∈ GL(n,Z), and by R, the union of a
single rank-one matrix and a finite subset of the sporadic points. Moreover,

1. If n ≤ 5, then there are no sporadic points. Thus, R = {e1eT1 }, where e1 is
the first unit vector.

2. If n = 6, then R = {e1eT1 ,M}, where M is a single sporadic point defined in
Section 2 Proposition 5.

Theorem 2. For dimension 3 ≤ n ≤ 10, the conical semigroup SOC(n) ∩ Zn

is (R,G)-finitely generated. The matrices in G and the set R will be defined in
Section 3.

We say that two matrices X1, X2 are unimodularly equivalent if X2 = U ·X1

for some U ∈ GL(n,Z). It is easy to see that it defines an equivalence relation for
all integer PSD matrices. Note that the equivalence class of e1e

T
1 are all rank-1

integer matrix xxT for some primitive integer vector x ∈ Zn. An interpretation
of Theorem 1 is that for dimension n ≤ 5, every integer PSD matrix can be
represented as the sum of rank-1 matrices xxT for some primitive integer vector
x ∈ Zn. However, the same result fails for dimension n = 6. In this case, we will
have that every integer PSD matrix can be represented as the sum of rank-1
matrices and one sporadic matrix Y , which is unimodularly equivalent to M
(this matrix was first found by [19]). In general, every integer PSD matrix can
be represented as the sum of rank-1 matrices and one sporadic matrix, which is
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unimodularly equivalent to a matrix in the finite set R. Regarding prior work
that inspired us, we mention [16] that contains a similar rank-1 decomposition
structure for PSD {0, 1} matrices: a PSD {0, 1} matrix X ∈ Sn+(Z) ∩ {0, 1}n×n

satisfiesX =
∑

i∈K xix
T
i for xi ∈ {0, 1}n, whereK is a finite index set. Similarly,

[18] extended the results to PSD {0,±1} matrices: a PSD {0,±1} matrix X ∈
Sn+(Z) ∩ {0,±1}n×n satisfies X =

∑
i∈K xix

T
i for xi ∈ {0,±1}n, where K is a

finite index set. Our results extend to all integer positive semidefinite matrices.
For the second order cone, we extended the construction of the Barning-Hall
tree in [8] for the primitive extreme points (or Pythagorean tuples) to classify
the sporadic points.

While it might be tempting to believe that these results hint that all conical
semigroups are (R,G)-finitely generated for some finite set R and some group
G, we conjecture the contrary:

Conjecture 1 There exists a conical semigroup S that is not (R,G)-finitely
generated for any choice of R and G.

What is the significance of these results beyond their connections to classical
geometry of numbers, lattices, and number theory? (see e.g., [14]). We motivate
our interest about conical semigroups with two applications in optimization. In
what follows, we assume that our cone C ⊂ RN is full-dimensional.

The first application regards the notion of Chvátal-Gomory cuts which is
useful in the branch-and-cut methods for integer programming. How much of
this can be extended to conic integer programming? Given a linear map A :
Rm → RN and c ∈ RN , we define a linear conical inequality (LCI) system as

LCIC(c,A) := {x ∈ Rm : c−A(x) ∈ C}

where c ∈ ZN and A(Zm) ⊆ ZN . When C is the cone of positive semidefinite
matrices in Sn(R), then N =

(
n+1
2

)
and A(x) =

∑m
i=1 xiAi for some matrices

A1, . . . , Am ∈ Sn(Z). This is known as a linear matrix inequality and defines
a spectrahedron. An important concept for LCI is called total dual integrality
(TDI), which has been well-known for polyhedral cones C [13,12] and recently
extended to spectrahedral cones [7,17]. We use C∗ to denote the dual cone of C,
A∗ to denote the adjoint linear map of A, and give a definition for general cones
here.

Definition 3. An LCI system c − A(x) ∈ C is totally dual integral, if for any
b ∈ Zm, the dual optimization problem

min y(c) s.t. A∗(y) = b, y ∈ C∗,

whenever feasible, has an integer optimal solution y∗ ∈ C∗ ∩ ZN .

To approximate the convex hull of Z := LCIC(c,A)∩Zm, a commonly used
approach (quite similar to its polyhedral version) is to add Chvátal-Gomory
(CG) cuts, which are defined as follows [17]. If u ∈ Zm is an integral vector
and v ∈ R a real number such that the linear inequality uTx ≤ v is valid for
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all x ∈ LCIC(c,A), then the inequality uTx ≤ ⌊v⌋ is valid for all x ∈ Z and
called a CG cut. There are possibly infinitely many CG cuts so we define the
(elementary) CG closure as

CG-cl(Z) :=
⋂

(u,v)∈Zm×R:
S⊆{x:uTx≤v}

{
x ∈ Rm : uTx ≤ ⌊v⌋

}
. (1)

Now take any linear function w ∈ C∗ such that w(ZN ) ⊆ Z. Then, a CG cut
can be generated by

w ◦ A(x) ≤ ⌊w(c)⌋,

as, by definition, w ◦ A(Zm) ∈ Z. Conversely, if the conical semigroup SC∗ :=
C∗∩ZN is (R,G)-finitely generated, then we can get all CG cuts through R and
G for our TDI LCI system. This is one of the nice consequences of this property.

Theorem 3. Suppose C ⊂ RN is a full-dimensional convex cone such that
SC∗ := C∗ ∩ ZN is (R,G)-finitely generated, and LCIC(c,A) is TDI. Then
the CG closure for Z := LCIC(c,A) ∩ Zm can be described by

CG-cl(Z) =
{
x ∈ Rm : (g · r)TA(x) ≤ ⌊(g · r)Tc⌋, ∀ r ∈ R, g ∈ G

}
.

The final application has to do with classical notions of integer rank [10]. Just
like the notion of (real) rank of a linear system allows us to bound the number
of non-zero entries in a solution of a linear system, we want to know how many
elements are needed to decompose any element of a conical semigroup as a
linear combination of generators with non-negative integer coefficients. Suppose
that our conical semigroup SC = C ∩ ZN has an integer generating set B.
For any element s ∈ SC , there exist integer generators b1, . . . , bm ∈ B and
λ1, . . . , λm ∈ Z≥1 such that s =

∑m
i=1 λibi, for some m ≥ 1. The minimum

number m needed in the sum is called the integer Carathéodory rank (ICR) of s,
and the maximum number over all s ∈ SC is the ICR of the conical semigroup
SC or the cone C. We show an upper bound on the ICR that depends only on
the dimension N . The proof is almost identical to the popular polyhedral result
in [10,22] but we must use the extreme point characterization of semi-infinite
linear optimization [9] to allow infinite generating sets.

Theorem 4. Let C ⊂ RN be an arbitrary pointed convex cone and SC := C ∩
ZN . Then ICR(SC) ≤ 2N − 2.

2 The Positive Semidefinite (PSD) Cone

Let Sn(Z) (resp. Sn(R)) denote the set of n × n symmetric matrices of integer
(resp. real) entries. For a matrix X ∈ Sn(Z), we say that X is PSD (denoted as
X ⪰ 0) if and only if it is so when regarded as a real matrix X ∈ Sn(R). We
denote Sn+(Z) as the set of integer PSD matrices.
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The group GL(n,Z) embeds into GL(N,Z) as follows. Given a matrix U ∈
GL(n,Z) and any X ∈ Sn(Z), we define the action U ·X := UXUT. This action
is a linear map and takes integer points in ZN to integer points, and thus can be
represented by the multiplication with a matrix in GL(N,Z). It is well-known
that this group GL(n,Z) is finitely generated [23]. For the convenience of discus-
sion, we still use the matrix U ∈ GL(n,Z) to denote this matrix multiplication
in the subgroup of GL(N,Z).

2.1 Lemmas for n ≤ 5 and n = 6

The following integer rank-1 decomposition for PSD integer matrices is studied
in [19]. We recast their arguments with a modern geometric perspective, and use
it to extend the notion of (R,G)-finite generation to the PSD cone.

Lemma 1. If n ≤ 5, then for any X ∈ Sn+(Z), we can find a finite index set K
and vectors xi ∈ Zn, i ∈ K such that

X =
∑
i∈K

xix
T
i . (2)

To restate Definition 2 in the PSD case, we say an integer matrix X ∈ Sn(Z) is
sporadic if there does not exist x ∈ Zn \ {0} such that X − xxT ⪰ 0. Lemma 1
is equivalent to the fact that there is no sporadic point in Sn+(Z) when n ≤ 5.

Proposition 1. There is no sporadic point in Sn+(Z) if and only if every positive
semidefinite integer matrix in Sn+(Z) has an integer rank-1 decomposition.

Proof. If there is no sporadic point in Sn+(Z), then for every Y ∈ Sn+(Z), there
exists x ∈ Zn \ {0} such that Y − xxT ⪰ 0. For X ∈ Sn+(Z), we do the following
procedure for X0 := X (with index i initialized to 1):

1. Take any xi ∈ Zn \ {0} such that Xi := Xi−1 − xix
T
i ⪰ 0.

2. IfX = 0, then we have found an integer rank-1 decompositionX =
∑i

j=1 xjx
T
j ;

otherwise set the index i← i+ 1 and go back to step 1.

To see that the procedure terminates in finitely many steps, note that the di-
agonal of xix

T
i contains at least 1 nonzero entry because xi ̸= 0. Thus the

trace tr(Xi) ≤ tr(Xi−1) − 1 for any i ≥ 1 because the entries are integers. The
procedure can repeat no more than tr(X) times as tr(Xi) ≥ 0.

If every X ∈ Sn+(Z) has an integer rank-1 decomposition X =
∑

i∈K xix
T
i ,

then any of xi, i ∈ K satisfies the requirement X − xix
T
i ⪰ 0. ⊓⊔

For any matrix X ∈ Sn(R), we can define a convex set C(X) := {x ∈ Rn :
X−xxT ⪰ 0}. Since X−xxT ⪰ 0 if and only if, for any v ∈ Rn, |vTx|2 ≤ vTXv,
we see that C(X) is a compact convex set that is symmetric about the origin but
not necessarily full-dimensional. This provides another equivalent formulation of
the integer rank-1 decomposition.

Proposition 2. For X ∈ Sn+(Z), X is sporadic if and only if C(X)∩Zn = {0}.
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This provides a geometric perspective to our problem. Note that the set C(X)
is a (possibly degenerate) ellipsoid because

X ⪰ xxT ⇐⇒

[
1 xT

x X

]
⪰ 0 ⇐⇒ xTX†x ≤ 1, (I −XX†)x = 0,

by the positive semidefiniteness of Schur complements, where X† denotes the
pseudoinverse of X. In the case where det(X) > 0,

C(X) = {x ∈ Rn : xTadj(X)x ≤ det(X)} with vol(C(X)) = Vn

√
det(X)

where adj(X) is the adjugate of X satisfying adj(X) = det(X)X−1 and Vn :=
πn/2/Γ (n2 + 1) is the volume of the unit n-ball. The degenerate case for rank 1
is characterized by the following proposition.

Proposition 3. Suppose X ∈ Sn+(Z), and rank(X) = 1, then X = λxxT, where
x ∈ Zn and λ ∈ Z≥1.

Proof. As X ⪰ 0 and rank(X) = 1, we can assume that X = aaT for some
a ∈ Rn. Because X ∈ Sn(Z), we have aiaj ∈ Z for i, j ∈ [n]. In particular,
a2i ∈ Z. Denote ki := a2i ∈ Z≥0. Without loss of generality, we can assume that
ki ≥ 1, i.e., ai ̸= 0, otherwise, we can just consider the submatrix corresponding
to the nonzero ki.

Suppose that there exists some ai ∈ Z \ {0} and aj ∈ {±
√

kj} /∈ Q. Then
aiaj /∈ Q, a contradiction. Therefore, ai ∈ Z for all i or ai /∈ Q for all i.

If ai ∈ Z for all i, then the result holds with λ = 1 and x = a.
If ai /∈ Q for all i, i.e., ki is not a square. Because aiaj ∈ Z, we have√

kikj ∈ Z, which implies that kikj = t2ij for some integer tij . Suppose that
p1, . . . , ps are all the prime factors in the decomposition of ki, i ∈ [n]. Assume

that ki =
∏s

ℓ=1 p
αi

ℓ

ℓ , αi
ℓ ∈ Z≥0. We have kikj =

∏s
ℓ=1 p

αi
ℓ+αj

ℓ

ℓ = t2ij , which implies

that αi
ℓ + αj

ℓ is even. Therefore, for a fixed ℓ, either αi
ℓ is even for all i ∈ [n] or

αi
ℓ is odd for all i ∈ [n]. Let I := {ℓ ∈ [s] : αi

ℓ is odd} and λ =
∏

ℓ∈I pℓ. We have

ki/λ is a square, thus X = λxxT for x = a/
√
λ, where xi =

√
ki/λ ∈ Z. ⊓⊔

From Proposition 3, we can directly prove the case for n = 2 using Minkowski’s
Theorem (for example, see [11]).

Proposition 4. Lemma 1 holds for n = 2.

Proof. For n = 2. Let X =

[
a11 a12

a12 a22

]
⪰ 0, where a11, a12, a22 ∈ Z, which implies

that a11 ≥ 0, a22 ≥ 0, a11a22 − a212 ≥ 0. By the rank 1 result, we can consider
the case when X ≻ 0, i.e., det(X) = a11a22 − a212 ≥ 1, a11 ≥ 1, a22 ≥ 1. Then
C(X) := {x ∈ R2 : X − xxT ⪰ 0} =

{x ∈ R2 : a11 − x2
1 ≥ 0, a22 − x2

2 ≥ 0, (a11 − x2
1)(a22 − x2

2)− (a12 − x1x2)
2 ≥ 0}.
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We claim that C(X) = {x ∈ R2 : (a11 − x2
1)(a22 − x2

2)− (a12 − x1x2)
2 ≥ 0}. We

only need to show that (a11 − x2
1)(a22 − x2

2) − (a12 − x1x2)
2 ≥ 0 implies that

a11 − x2
1 ≥ 0, a22 − x2

2 ≥ 0. Notice that a11a22 − a212 > 0 and

(a11 − x2
1)(a22 − x2

2)− (a12 − x1x2)
2 = (a11a22 − a212)− a22x

2
1 + 2a12x1x2 − a11x

2
2

=
a11a22 − a212

a11
(a11 − x2

1)− a11(x2 −
a12
a11

x1)
2

=
a11a22 − a212

a22
(a22 − x2

2)− a22(x1 −
a12
a22

x2)
2.

We know that a11 − x2
1 ≥ 0 and a22 − x2

2 ≥ 0.
C(X) is an centrally symmetric ellipsoid {x ∈ R2 : det(X)−a22x2

1+2a12x1x2−
a11x

2
2 ≥ 0} with area π

√
det(X) (because C(X) = {(x1, x2) :

x2
1

a11
− a11

det(X) (x2 −
a12

a11
x1)

2 ≤ 1}).
If det(X) ≥ 2, then vol(C(X)) ≥

√
2π > 4, we know that C(X) ∩ Z2 ̸= ∅ by

Minkowski Theorem.
If det(X) = 1, then C(X) = {x ∈ Rn : a22x

2
1 − 2a12x1x2 + a11x

2
2 ≤ 1}.

Because a22, a12, a11 ∈ Z, we have C(X) ∩ Z2 = C̃(X) ∩ Z2, where C̃(X) =√
2− ϵ · C(X) = {x ∈ Rn : a22x

2
1 − 2a12x1x2 + a11x

2
2 ≤ 2 − ϵ}. Therefore,

vol(C̃(X)) = (2−ϵ)·π > 4, when 0 < ϵ < 2− 4
π . Therefore, C(X)∩Z2 = C̃(X)∩Z2

is nonempty by Minkowski Theorem. ⊓⊔

In the general degenerate case, we can reduce the problem to one involving
full-rank matrices of some lower dimension.

Lemma 2. Let X ∈ Sn(Z). If r = rank(X) < n, then X is unimodularly
equivalent to [

0 0

0 X̂

]
,

for some X̂ ∈ Zr×r, rank(X̂) = r.

Proof. If rank(X) < n, then there exists a primitive vector z ∈ Zn such that
Xz = 0.

Pick z to be in a basis of a primitive sublattice Λ = N ∩Zn, where N := {y ∈
Rn : Xy = 0}. Thus, a basis of Λ containing z can be extended to a basis of
Zn, U = [z,u2, . . . ,un]. Because U is a basis of Zn, we know that |det(U)| = 1,
i.e., U is unimodular. Then

UTXU =

[
0 0

0 X̂

]
.

Iterating this process until X̂ is positive definite, i.e., rank(X̂) = r. ⊓⊔

Notice that if X1, X2 are unimodularly equivalent, then C(X1) ∩ Zn ̸= {0} if
and only if C(X2) ∩ Zn ̸= {0}. Thus our problem expects an answer under the
unimodular equivalence of integer matrices in Sn+(Z).
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The scaling of C(X) into C̃(X) (while preserving the integer points) in the
proof for Proposition 4 results in

vol(C̃(X)) < Vn

√
det(X) ·

(
det(X) + 1

det(X)

)n/2

where the right-hand side can be approached arbitrarily. When n = 3, Vn ≈
4.189, the right-hand side becomes 23/2 ≈ 2.828,

√
2 · (3/2)3/2 ≈ 2.598,

√
3 ·

(4/3)3/2 ≈ 2.667 for det(X) = 1, 2, 3, respectively, and greater than 2 for
det(X) ≥ 4. Thus vol(C̃(X)) > 8 so C̃(X) ∩ Z3 ̸= {0} by Minkowski’s theo-
rem.

To prove Lemma 1, we need to use a more sophisticated method based on
the Hermite constant [21]

γn :=

(
max
A≻0

λ1(A)

(det(A))
1
n

)n

, where λ1(A) = min
x∈Zn\{0}

(xTAx).

Remark 1. Hermite gives a bound γn ≤ ( 43 )
n(n−1)

2 . The exact value of γn is only
known for n ≤ 8 and n = 24.

n 2 3 4 5 6 7 8 24

γn
4
3 2 2 8 64

3 64 256 424

Remark 2. From the volume argument in Minkowski’s Theorem, we have

min
x∈Zn\{0}

(xTAx) ≤ 4

π
Γ (1 +

n

2
)

2
n det(A)

1
n ∼ 2n

πe
det(A)

1
n ,

which is better than the bound given by γn ≤ ( 43 )
n(n−1)

2 when n is large, but it
is not enough for the dimension n = 4, 5.

Proof (for Lemma 1). The case n = 1 follows from Proposition 3. We will show
that C(X) ∩ Zn ̸= {0} for 2 ≤ n ≤ 5, where C(X) = {x ∈ Rn : xTadj(X)x ≤
det(X)}. By the definition of the Hermite constant, we have

min
x∈Zn\{0}

(xTadj(X)x) ≤ (γn det(adj(X)))
1
n = (γn(det(X))n−1)

1
n .

For n = 2, 3, 4, 5, we have nn

(n−1)n−1 > γn. ( 2
2

11 = 4, 33

22 ≈ 6.75, 44

33 ≈ 9.48, 55

44 ≈
12.21, 66

55 ≈ 14.93) By taking the derivative with respect to det(X), we know

that (det(X)+1)n

(det(X))n−1 ≥ nn

(n−1)n−1 . Thus, γn < (det(X)+1)n

det(X)n−1 . Therefore,

min
x∈Zn\{0}

(xTadj(X)x) ≤ (γn det(adj(X)))
1
n = (γn det(X)n−1)

1
n < det(X) + 1.

Because xTadj(X)x, det(X) ∈ Z for any x ∈ Zn, we have

min
x∈Zn\{0}

(xTadj(X)x) ≤ det(X),

which implies that C(X) ∩ (Zn \ {0}) ̸= ∅. Lemma 1 now follows from Proposi-
tions 2 and 1, and Lemma 2. ⊓⊔
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The argument used to prove Lemma 1 fails for n ≥ 6, but it implies that the
determinant of the sporadic matrices is bounded by a constant only depend on n.
For example, in the case of n = 6, the argument only fails when 3 ≤ det(X) ≤ 14;
for n = 7, it only fails when 2 ≤ det(X) ≤ 56, and for n = 8, it only fails when
1 ≤ det(X) ≤ 247. We summarize this observation in the following corollary.

Corollary 1. If X ∈ Sn+(Z) is sporadic, then det(X) < γn.

A sporadic matrix for n = 6 was initially found in [19].

Proposition 5. In n = 6, the matrix M is sporadic, i.e., C(M) ∩ Zn = {0}.

M =


2 0 1 1 1 1
0 2 0 1 1 1
1 0 2 1 1 1
1 1 1 2 1 1
1 1 1 1 2 1
1 1 1 1 1 2

 with det(M) = 3.

Proof. We verify that minx∈Zn\{0}(x
Tadj(X)x) > det(X) = 3.

adj(X) = (det(X))X−1 =



4 3 1 −2 −2 −2
3 6 3 −3 −3 −3
1 3 4 −2 −2 −2
−2 −3 −2 4 1 1

−2 −3 −2 1 4 1

−2 −3 −2 1 1 4


Note that xTadj(X)x = [(x1 +2x2 + x3 − x4 − x5 − x6)

2 + (x1 + x2 + x3 − x4 −
x5 − x6)

2 + x2
2] + [(x1 − x3)

2 + x2
1 + x2

3] + [(x4 − x5)
2 + (x4 − x6)

2 + (x5 − x6)
2].

Let A2 := (x1 +2x2 + x3− x4− x5− x6)
2 + (x1 + x2 + x3− x4− x5− x6)

2 + x2
2,

A13 := (x1 − x3)
2 + x2

1 + x2
3 and A456 := (x4 − x5)

2 + (x4 − x6)
2 + (x5 − x6)

2.
Then xTadj(X)x = A2 +A13 +A456.

Suppose, there exists x ∈ Z6 such that xTadj(X)x ≤ 3. We are going to show
that x = 0. Notice that A2, A13, A456 are even, which implies that A2 + A13 +
A456 ≤ 2. Then at most one of A2, A13, A456 is nonzero.

We consider the following three cases:

1. if A13 = 0, A456 = 0, then x1 = x3 = 0, x4 = x5 = x6 = 0. Because
A2 = 6x2

2 ≤ 2, we have x2 = 0.
2. if A2 = 0, A456 = 0, then x4 = x5 = x6 = 0, x2 = 0, x1 + x3 = 0. Because

A13 = 6x2
1 ≤ 2, we have x1 = 0.

3. if A2 = 0, A13 = 0, then x1 = x3 = 0, x2 = 0, x4 + x5 + x6 = 0. Because
A456 = (x4 − x5)

2 + (2x4 + x5)
2 + (x4 + 2x5)

2 = 6(x2
4 + x2

5 + x4x5) ≤ 2, we
have x4 = x5 = x6 = 0.

Therefore, minx∈Zn\{0}(x
Tadj(X)x) > 3. For x = e1, xTadj(X)x = 4, i.e.,

minx∈Zn\{0}(x
Tadj(X)x) = 4. ⊓⊔
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Moreover, in [15], it is shown that for n = 6, M is the unique sporadic matrix
under unimodular equivalence. Using this fact, we have the following Lemma.

Lemma 3. If n = 6, then for any X ∈ Sn+(Z),

X =
∑
i∈K

xix
T
i + Y

for xi ∈ Zn and Y unimodularly equivalent to M , where K is a finite index set.

2.2 Proof of Theorem 1

Proof. We know that the primitive extreme points are generated from the group
GL(n,Z) that acts on {e1eT1 }. The finiteness of the index set K follows from
similar argument in Proposition 1. We only need to prove that the sporadic
points are generated from the group GL(n,Z) on a finite set R.

Corollary 1 shows that for any sporadic matrix X, det(X) < γn. By [21,
Theorem 2.4], there exists a constant αn > 0 depending only on n, such that
for any positive definite matrix X ∈ Sn(Z), there is a unimodularly equivalent
matrix X ′ of X with diagonal entries satisfy

n∏
i=1

X ′
ii ≤ αn det(X

′) = αn det(X) < αnγn.

Because X ′ ∈ Sn(Z) is positive definite, X ′
ii ≥ 1 and thus is bounded from

above. From this we see that there are only finitely many possibilities for such X ′

because each off-diagonal entry must satisfy |X ′
ij |2 ≤ X ′

iiX
′
jj for any 1 ≤ i, j ≤ n.

The two special cases n ≤ 5 and n = 6 follow from Lemma 1 and 3. ⊓⊔

3 The Second-Order Cone (SOC)

In this section, we will let Tn be the conical semigroup SOC(n) ∩ Zn where

SOC(n) :=

{
x ∈ Rn : 0 ≤

√
x2
1 + · · ·+ x2

n−1 ≤ xn

}
.

Additionally, for a,b ∈ Rn, consider the quadratic form

⟨a,b⟩ := a1b1 + a2b2 + · · ·+ an−1bn−1 − anbn.

In this quadratic space, the reflection in vector w is defined as x→ x−2 ⟨x,w⟩
⟨w,w⟩w.

Definition 4. Let Pi,j be the permutation matrix that swaps the ith and jth
columns and define Qk be the matrix determined by

(Qk)i,j =


−1 if i = j = k

1 if i = j ̸= k

0 if i ̸= j.
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For n = 3, let A3 denote the matrix associated with the reflection in the
vector (1, 1, 1). For 4 ≤ n ≤ 10, let An denote the matrix associated with the
reflection in the vector (1, 1, 1, 0, . . . , 0, 1) also associated to this bilinear form:

A3 =

−1 −2 2

−2 −1 2

−2 −2 3

 , An =



0 −1 −1

−1 0 −1

−1 −1 0

0
1

1

1

0 In−4 0
−1 −1 −1 0 2


We define the matrix A+

n = Q1Q2 . . . Qn−1An.

Elements s ∈ Tn such that ⟨s, s⟩ = 0 belong to the boundary of Tn, and
we will denote the set of these points as ∂Tn. In number theory, these points
are called Pythagorean tuples. In [8], they proved that the set of primitive
Pythagorean tuples, denoted as extp(Tn), is generated by finitely many matrices
acting on a finite set R for 3 ≤ n ≤ 10.

Lemma 4 (Theorem 1 in [8]). For 3 ≤ n ≤ 10, extp(Tn) = ∪r∈RG · r, where
the group

G =
〈
An, Q1, . . . , Qn−1, P1,2, P1,3, . . . P1,n−1

〉
and the sets

1. R =
{
(1, 0, . . . , 0, 1)T

}
for 3 ≤ n < 10,

2. R =
{
(1, 0, 0, 0, 0, 0, 0, 0, 0, 1)T, (1, 1, 1, 1, 1, 1, 1, 1, 1, 3)T

}
for n = 10,

where G acts on R by left multiplication.

We will begin this section by discussing the structural properties of the spo-
radic points of Tn. Then we use the structural properties of Pythagorean tuples
and sporadic points to prove Theorem 2.

3.1 Sporadic Points of SOC(n) ∩ Zn

In this section, we will begin by restating the definition of sporadic in the case of
SOC(n) and offer two partial characterizations of sporadic elements of SOC(n).

Definition 5. Let Tn = SOC(n) ∩ Zn. We call a point s ∈ Tn sporadic if there
is no point p such that ⟨p,p⟩ = 0 and s− p ∈ Tn.

Just as the group G takes elements of ∂Tn to ∂Tn, the group G will take
sporadic elements to sporadic elements. This closure ensures that our action by
G on the semigroup Tn is well-defined.

Lemma 5. Let s ∈ Tn.

1. Then, A+
n s and (A+

n )
−1s are both in S.

2. If s is sporadic, then A+
n s and (A+

n )
−1s are both sporadic.
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Proof. The first claim follows by simply checking the required inequalities di-
rectly. For the second claim, we proceed by contradiction. Suppose s is sporadic
but (A+

n )s is not. There, there is some point p ∈ Tn such that ⟨p,p⟩ = 0 and
s− p ∈ Tn. However, we would then have that

(A+
n )

−1(A+
n s− p) = s−A+

np ∈ Tn.

As A+
np satisfies ⟨A+

np, A
+
np⟩ = 0, this is a contradiction. The case of the inverse

matrices follows similarly. ⊓⊔

Next, we will provide some Lemmas about the properties of sporadic points
necessary to prove Theorem 2. For a detailed exposition of the technical proofs,
please refer to the extended version. Lemmas 6 and 7 show that sporadic points
are close to the boundary, ∂Tn.

Lemma 6. Suppose s ∈ Tn is a primitive sporadic with non-negative entries
such that sn > 1 and si ̸= 0 for some i ∈ [n− 1]. Then,

sn =

⌈√
s21 + s22 + · · ·+ s2n−1

⌉
Proof. We will show this by proving that√

s21 + s22 + · · ·+ s2n−1 < sn <
√

s21 + s22 + · · ·+ s2n−1 + 1

where the first inequality is given by membership in Tn. Without loss of general-
ity, we can assume that s1 ̸= 0. By way of contradiction, suppose that s is a primi-

tive sporadic such that sn > 1 and s1 > 0, and that sn ≥
√
s21 + s22 + · · ·+ s2n−1+

1. Then, we would have that

sn − 1 ≥
√
s21 + s22 + · · ·+ s2n−1 >

√
(s1 − 1)2 + s22 + · · ·+ s2n−1

which is equivalent to s − (1, 0, . . . , 0, 1) ∈ Tn. This contradicts the assumption
that s is sporadic. Thus, we have have the desired equality. ⊓⊔

Lemma 7. Let s ∈ Tn. If ⟨s, s⟩ = −1, then s is sporadic.

Proof. By way of contradiction, suppose ⟨s, s⟩ = −1 and that s is not sporadic.
Then, there exists some p ∈ Tn such that ⟨p,p⟩ = 0 and s − p ∈ Tn. This is
equivalent to saying that

⟨s− p, s− p⟩ ≤ 0.

This gives us that

⟨s, s⟩ − 2⟨s,p⟩+ ⟨p,p⟩ ≤ 0

−1− 2⟨s,p⟩ ≤ 0
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Thus, ⟨s,p⟩ ≥ 0. However, as ⟨s, s⟩ = −1 implies that
√
s21 + · · ·+ s2n−1 < sn

and ⟨p,p⟩ = 0 implies that
√
p21 + · · ·+ p2n−1 = pn, we have that

s1p1 + · · ·+ sn−1pn−1 <
√
(s21 + · · ·+ s2n−1)(p

2
1 + · · ·+ p2n−1) < snpn.

Thus, ⟨s,p⟩ < 0, reaching a contradiction. Therefore, ⟨s, s⟩ = −1 implies that s
is sporadic. ⊓⊔

Inspired by the structure of Pythagorean tuples, we analyze the set of spo-
radic points that remain at the same height in Tn after multiplication by (A+

n )
−1.

Let (p)n denotes the nth coordinate of p,

Lemma 8. Let n ≤ 10. Suppose s ∈ Tn is a primitive sporadic such that s1 ≥
· · · ≥ sn−1 ≥ 0 and sn > 1. The following list of tuples are the only such s where
((A+

n )
−1s)n = sn.

– For n = 7, we have the following tuple: (1, 1, 1, 1, 1, 1, 3).
– For n = 8, we have the following tuples: (1, 1, 1, 1, 1, 1, 1, 3), (1, 1, 1, 1, 1, 1, 0, 3).
– For n = 9, we have the following tuples:

(1, 1, 1, 1, 1, 1, 1, 1, 3), (1, 1, 1, 1, 1, 1, 1, 0, 3), (1, 1, 1, 1, 1, 1, 0, 0, 3), (2, 2, 2, 2, 2, 2, 2, 1, 6).

– For n = 10, we have the following tuples:

(1, 1, 1, 1, 1, 1, 1, 1, 0, 3), (1, 1, 1, 1, 1, 1, 1, 0, 0, 3), (1, 1, 1, 1, 1, 1, 0, 0, 0, 3),

(2, 2, 2, 2, 2, 2, 2, 2, 1, 6), (2, 2, 2, 2, 2, 2, 2, 1, 0, 6).

Proof. This is equivalent to showing that these are the only such sporadic points
such that s1 + s2 + s3 = sn. As s is sporadic, s − (1, 0, . . . , 0, 1) /∈ Tn. This is
equivalent to saying that (sn − 1)2 < (s1 − 1)2 + s2s + · · ·+ s2n−1 or

2s1s2 + 2s2s3 + 2s1s3 − 2s2 − 2s3 − s24 − · · · − s2n−1 < 0. (3)

We begin by showing that the first six coordinates must be equal. We proceed
by contradiction in each of the below arguments.

– Suppose that s1 ≥ s2 + 1. Then, (3) implies

0 > 2s2(s2 + 1) + 2s2s3 + 2(s2 + 1)− 2s2 − 2s3 − s24 − · · · − s2n−1

= 2s22 + 4s2s3 − s24 − · · · − s2n−1 ≥ 0.

As this is a contradiction, we must have that s1 = s2.
– Suppose that s2 ≥ s3 + 1. Then, (3) implies

0 > 2s1(s3 + 1) + 2s3(s3 + 1) + 2s1s3 − 2(s3 + 1)− 2s3 − s24 − · · · − s2n−1

= 4s1s3 + 2s23 − s24 − · · · − s2n−1 + 2s1 − 2s3 − 2

≥ 2(s2 − s3 − 1) ≥ 0.

As this is a contradiction, we must have that s1 = s2 = s3.
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– Suppose that s3 ≥ s4 + 1. Then, (3) implies

0 > 6(s4 + 1)2 − 4(s4 + 1)− s24 − · · · − s2n−1

= 5s24 − s25 − · · · − s2n−1 + 2s4 + 2 ≥ 0

As this is a contradiction, we must have that s1 = s2 = s3 = s4.
– Suppose that s4 ≥ s5 + 1. Then, (3) implies

0 > 5(s5 + 1)2 − 4(s5 + 1)− s25 − · · · − s2n−1

= 4s25 − s26 − · · · − s2n−1 + 6s5 + 1

≥ 6s5 + 1 ≥ 0.

As this is a contradiction, we must have that s1 = s2 = s3 = s4 = s5.
– Suppose that s5 ≥ s6 + 1. Then, (3) implies

0 > 4(s6 + 1)2 − 4(s6 + 1)− s26 − · · · − s29

= 3s26 − s27 − · · · − s2n−1 + 4s6 − 4 ≥ 0.

As this is a contradiction, we must have that s1 = s2 = s3 = s4 = s5 = s6.

This implies that we have no such sporadic points for n ≤ 6. Suppose n = 7.
Then, any candidate tuple must be of one of the following form:

(k, k, k, k, k, k, 3k)

where k ∈ Z>0. As s is assumed to be primitive, k = 1 and the only possible
tuple is (1, 1, 1, 1, 1, 1, 3).

Suppose n = 8. Then, any candidate tuple must be of one of the following
forms:

(k, k, k, k, k, k, s7, 3k)

(k, k, k, k, k, k, k, 3k)

where k ∈ Z>0 and s7 ≤ k − 1. As s is assumed to be primitive, the second
possible form only contributes the tuple (1, 1, 1, 1, 1, 1, 1, 3). Suppose s is of the
first form listed. We claim that k = 1. By way of contradiction, suppose that
k ≥ 2. Then, s− (1, 0, . . . , 0, 1) ∈ Tn as

(3k − 1)2 − (k − 1)2 − 5k2 − (k + 1) = 3k2 − 5k + 1 ≥ 3 > 0

Thus, the only tuple satisfying these restrictions is (1, 1, 1, 1, 1, 1, 0, 3).
Suppose n = 9. Then, for k ∈ Z>0, any candidate tuple must be of one of

the following forms:

(k, k, k, k, k, k, s7, s8, 3k) (4)

(k, k, k, k, k, k, k, s8, 3k) (5)

(k, k, k, k, k, k, k, k, 3k) (6)
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where s7, s8 ≤ k − 1.
Suppose s is of the form (4). By way of contradiction, suppose that k ≥ 2.

We claim that s− (1, 0, . . . , 0, 1) ∈ Tn. This follows from that fact that

(3k − 1)2 − (k − 1)2 − 5k2 − s27 − s28 ≥ (3k − 1)2 − (k − 1)2 − 5k2 − 2(k − 1)2

= k2 − 2

≥ 2 > 0

Thus, smust not be sporadic and k = 1. This gives us the tuple (1, 1, 1, 1, 1, 1, 0, 0, 3).
Suppose s is of the form (5). By way of contradiction, suppose k ≥ 3. Then,

we claim that s− (1, 0, . . . , 0, 1) ∈ Tn. This follows from the fact that

(3k − 1)2 − (k − 1)2 − 6k2 − s28 ≥ (3k − 1)2 − (k − 1)2 − 6k2 − (k − 1)2

= 2k2 − 2k − 1

≥ 2 > 0.

Thus, we only need to consider k = 1, 2. If k = 1, this gives us the tuple
(1, 1, 1, 1, 1, 1, 1, 0, 3). Suppose k = 2. This gives us the following possible tuples:

(2, 2, 2, 2, 2, 2, 2, 0, 6), (2, 2, 2, 2, 2, 2, 2, 1, 6).

This first tuple listed is not primitive so this only give us the tuple (2, 2, 2, 2, 2, 2, 2, 1, 6).
Lastly, if s is of the form (6), then s is only primitive if k = 1. This gives us our
last tuple, (1, 1, 1, 1, 1, 1, 1, 1, 3).

Suppose n = 10. Then,for k ∈ Z>0, any candidate tuple must be of one of
the following forms:

(k, k, k, k, k, k, s7, s8, s9, 3k) (7)

(k, k, k, k, k, k, k, s8, s9, 3k) (8)

(k, k, k, k, k, k, k, s9, 3k) (9)

(k, k, k, k, k, k, k, k, 3k) (10)

where s7, s8, s9 ≤ k − 1. Any tuple of form (10) is a Pythagorean tuple so we
may exclude it. Suppose s is of the form (7). By way of contradiction, suppose
k ≥ 2. Then, we claim that s − (1, 0, . . . , 0, 1) ∈ Tn. This follows from the fact
that

(3k − 1)2−(k − 1)2 − 5k2 − s27 − s28 − s29

≥ (3k − 1)2 − (k − 1)2 − 5k2 − 3(k − 1)3

= 2k − 3 ≥ 1 > 0.

Thus, k = 1 and the only tuple we have of this form is (1, 1, 1, 1, 1, 1, 0, 0, 0, 3).
Suppose s is of the form (8). By way of contradiction, suppose k ≥ 2. If

s9 ≥ 1, then s− (1, 1, . . . , 1, 3) ∈ Tn as

(3k − 3)2 − 7(k − 1)2 − (s8 − 1)2 − (s9 − 1)2 ≥ (3k − 3)2 − 7(k − 1)2 − 2(k − 2)2

= 4k − 6 ≥ 2 > 0
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Thus s9 = 0. Suppose k ≥ 3. Then, s− (1, 0, . . . , 0, 1) ∈ Tn as

(3k − 3)2 − (k − 1)2 − 6k2 − s28 ≥ (3k − 3)2 − (k − 1)2 − 6k2 − (k − 1)2

= k2 − 2k − 1 ≥ 2 > 0

Thus, our options are k = 1, 2. If k = 1, this recovers the tuple (1, 1, 1, 1, 1, 1, 1, 0, 0, 3).
If k = 2, this gives us potential tuples (2, 2, 2, 2, 2, 2, 2, 0, 0, 6) and (2, 2, 2, 2, 2, 2, 2, 1, 0, 6).
The first is not primitive so we exclude it.

Lastly, suppose s is of the form (9). If s9 ̸= 0, the s − (1, 1, . . . , 1, 3) ∈ Tn.
This follows from the fact that

(3k − 3)2 − 8(k − 1)2 − (s9 − 1)2 ≥ (3k − 3)2 − 8(k − 1)2 − (k − 2)2

= 14k − 11 ≥ 0

Thus, s9 = 0. The only primitive sporadic satisfying these constraints is (1, 1, 1, 1, 1, 1, 1, 1, 0, 3).
This completes the proof. ⊓⊔

Then we show that besides the points listed in Lemma 8, every other sporadic
points will reduce to a strictly lower height after multiplication by (A+

n )
−1.

Lemma 9. Let s ∈ Tn be sporadic with non-negative entries such that s1 ≥ s2 ≥
· · · ≥ sn−1, s1 ≥ 1 and 3 ≤ n ≤ 10. For s not listed in Lemma 8,

((A+
n )

−1s)n < (s)n.

Proof. This is equivalent to showing that −s1 − s2 − s3 + 2sn < sn, or rather
sn < s1 + s2 + s3. The case of n = 3 reduces to a similar inequality s3 < s1 + s2.
By Lemma 6, we have that

sn =

⌈√
s21 + s22 + · · ·+ s2n−1

⌉
≤
⌈√

s21 + s22 + s23 + 2s1s2 + 2s1s3 + 2s2s3

⌉
(11)

=

⌈√
(s1 + s2 + s3)2

⌉
= s1 + s2 + s3,

where the inequality follows from the order s1s2 ≥ s1s3 ≥ s2s3 ≥ s24 ≥ ... ≥ s2n−1.
As s is not one of the tuples listed in Lemma 8, the inequality (11) can be made
strict. Therefore, sn < s1+ s2+ s3, which implies that (A+

n )
−1s sits at a strictly

lower height in the cone than s. ⊓⊔

3.2 Proof of Theorem 2

We now present a complete formulation of Theorem 2 followed by its proof.

Theorem 5. For dimension 3 ≤ n ≤ 10, the conical semigroup SOC(n)∩Zn is
(R,G)-finitely generated by

G =
〈
A+

n , Q1, . . . , Qn−1, P1,2, P1,3, . . . P1,n−1

〉
and a finite set R. More specifically,
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1. If 3 ≤ n ≤ 6, then R =
{
(1, 0, . . . , 0, 1)T, (0, . . . , 0, 1)T

}
.

2. If n = 7, then

R =
{
(1, 0, 0, 0, 0, 0, 1)T, (0, 0, 0, 0, 0, 0, 1)T, (1, 1, 1, 1, 1, 1, 3)T

}
.

3. If n = 8, then

R =
{
(1, 0, 0, 0, 0, 0, 0, 1)T, (0, 0, 0, 0, 0, 0, 0, 1)T, (1, 1, 1, 1, 1, 1, 1, 3)T, (1, 1, 1, 1, 1, 1, 0, 3)T

}
.

4. If n = 9, then

R =
{
(1, 0, 0, 0, 0, 0, 0, 0, 1)T, (0, 0, 0, 0, 0, 0, 0, 0, 1)T, (1, 1, 1, 1, 1, 1, 1, 1, 3)T,

(1, 1, 1, 1, 1, 1, 1, 0, 3)T, (1, 1, 1, 1, 1, 1, 0, 0, 3)T, (2, 2, 2, 2, 2, 2, 2, 1, 6)T
}
.

5. If n = 10, then

R =
{
(1, 0, 0, 0, 0, 0, 0, 0, 0, 1)T, (1, 1, 1, 1, 1, 1, 1, 1, 1, 3)T, (0, 0, 0, 0, 0, 0, 0, 0, 0, 1)T,

(1, 1, 1, 1, 1, 1, 1, 1, 0, 3)T, (1, 1, 1, 1, 1, 1, 1, 0, 0, 3)T, (1, 1, 1, 1, 1, 1, 0, 0, 0, 3)T,

(2, 2, 2, 2, 2, 2, 2, 2, 1, 6)T, (2, 2, 2, 2, 2, 2, 2, 1, 0, 6)T
}
.

Proof. This follows directly from Lemma 9 and that fact that (0, 0, . . . , 0, 1) is
the sporadic of minimal height in this cone. Let s ∈ Tn. If s is not sporadic, we
can represent it as

s = λ1p1 + λ2p2 + · · ·+ λkpk + λp (12)

where λ, λi ∈ Z≥0, each pi is a primitive Pythagorean tuple and p is sporadic.
By Lemma 4, each pi can be decomposed as pi = Gi(1, 0, . . . , 0, 1)

T when 3 ≤
n < 10 or pi = Gi(1, 0, . . . , 0, 1)

T + G̃i(1, 1, . . . , 1, 3)
T when n = 10 where each

Gi, G̃i ∈ G. It remains to consider the sporadic p. Given any primitive sporadic
tuple s, we can recover an element of R as follows:

1. Multiply p by the appropriate permutation matrices Pi,j and sign changing
matrices Qj so that p has non-negative entries and p1 ≥ · · · ≥ pn−1. Call
this resulting vector p′.

2. Multiply p′ by (A+
n )

−1 and repeat step 1 as necessary. By Lemma 9, the
height of the resulting vector will be strictly lower then that of the vector
we started with or the resulting vector will belong to R.

3. Repeat step 2 until the resulting vector r belongs to R. By Lemma 8, the
only possibilities for the resulting vector belong to R.

This process gives the equality r = G1 . . . Gkp. If we let G
′ = G1 . . . Gk, then we

have (G′)−1r = p. Therefore, for 3 ≤ n ≤ 10, the conical semigroup SOC(n) is
(R,G)-finitely generated by the claimed R and G. ⊓⊔
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When n = 9, the primitive sporadic point (2, 2, 2, 2, 2, 2, 2, 1, 6) can be written
as the sum of two sporadic points with smaller heights:

(2, 2, 2, 2, 2, 2, 2, 1, 6) = (1, 1, 1, 1, 1, 1, 1, 0, 3) + (1, 1, 1, 1, 1, 1, 0, 0, 3).

We can similarly decompose (2, 2, 2, 2, 2, 2, 2, 2, 1, 6) and (2, 2, 2, 2, 2, 2, 2, 1, 0, 6)
for n = 10. In this sense, these sporadic points fail to be minimal. Thus, if
we remove them from the set of roots R, our semigroup S remains (R,G)-
finitely generated. However, when we remove these point from our root sets,
our decomposition in equality (12) requires modification and we must allow for
multiple sporadic points in the expression.

Remark 3. Lastly, it is worth noting that inequality (11) would fail in dimensions
larger than 10. Thus, this line of argumentation would fail to produce results for
n > 10.

We can use Theorem 5 to recover a partial converse of Lemma 7.

Corollary 2. Let 3 ≤ n < 7 and fix s ∈ Tn. If s is a primitive sporadic, then
⟨s, s⟩ = −1.

Proof. Let s ∈ Tn be sporadic. Using theorem 5, we can express s as

s = G′(0, . . . , 0, 1)T

for G′ ∈ G. As ⟨G′s, G′s⟩ = ⟨s, s⟩ for all G′ ∈ G, we see that

⟨s, s⟩ = ⟨G′(0, . . . , 0, 1)T, G′(0, . . . , 0, 1)T⟩ = ⟨(0, . . . , 0, 1)T, (0, . . . , 0, 1)T⟩ = −1.

⊓⊔

In particular, this converse fails to hold in dimensions ≥ 7 as we have r ∈ R
such that ⟨r, r⟩ ≠ −1.

4 Applications: Total Dual Integrality, Chvátal-Gomory
Closures, and Integer Rank of vectors.

Proof (for Theorem 3). The containment ⊆ is obvious as discussed above. To
see the other containment, take any halfspace H := {x ∈ Rm : uTx ≤ v} for
some (u, v) ∈ Zm × R such that C ⊆ H. Then by the full dimensionality of C,
we have

v ≥ sup
x

{
uTx : c−A(x) ∈ C

}
= inf

y

{
y(c) : A∗(y) = u, y ∈ C∗} .

Using the TDI assumption, the infimum is attained by some y∗ ∈ C∗∩ZN . As S
is (R,G)-finitely generated, r1, . . . , rk ∈ R, g1, . . . , gk ∈ G, and λ1, . . . , λk ∈ Z≥0

such that

y∗ =

k∑
j=1

λj(gj · rj),
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for some k ≥ 1. Consequently, we have

⌊v⌋ ≥ ⌊y∗(c)⌋ =
⌊ k∑
j=1

λj(gj · rj)Tc
⌋
≥

k∑
j=1

λj⌊(gj · rj)Tc⌋.

Note that (λ1, . . . , λk) is a feasible solution to the following (semi-infinite) linear
optimization problem

inf
λ

∑
r∈R,g∈G

⌊(g · r)Tc⌋λr,g

s.t. A∗
( ∑

r∈R,g∈G

λg,r(g · r)
)

= u,

λ ∈
⊕

r∈R,g∈G

R≥0.

By weak duality of the semi-infinite optimization problem, we also have

k∑
j=1

λj⌊(gj · rj)Tc⌋ ≥ sup
x

{
uTx : A∗(g · r)Tx ≤ ⌊(g · r)Tc⌋, ∀ r ∈ R, g ∈ G

}
.

Therefore, the inequality uTx ≤ ⌊v⌋ is implied by the inequalities (g · r)TA(x) =
A∗(g · r)Tx ≤ ⌊(g · r)Tc⌋ for r ∈ R, g ∈ G. Since the halfspace H is arbitrary, we
conclude that

CG-cl(Z) ⊇
{
x ∈ Rm : (g · r)TA(x) ≤ ⌊(g · r)Tc⌋, ∀ r ∈ R, g ∈ G

}
. ⊓⊔

To prove Theorem 4, we use the notation R⊕I (or simply RI) to denote an
R-vector space where each vector (ai)i∈I ∈ RI has all but finitely many ai = 0.

Proof (for Theorem 4). Suppose B = {bi}i∈I ⊂ SC for some possibly infinite
index set I is an integer generating set for SC . Consider a semi-infinite linear
optimization problem

max
∑
i∈I

λi

s.t.
∑
i∈I

λibi = s,

(λi)i∈I ∈ R⊕I
≥0.

(13)

Since C is pointed, B satisfies the “opposite sign condition,” meaning that when-
ever

∑
i∈I µibi = 0 for some nonzero (µi)i∈I ∈ R⊕I , we have µi < 0 < µj for

some i, j ∈ I. Thus by [9, Theorem 2], we know that (13) has an extreme point
solution, denoted as (λ∗

i )i∈I with J := {i ∈ I : λ∗
i > 0}. By [9, Theorem 1],

the vectors {λi}i∈J ⊂ SC associated with the extreme point solution must be
linearly independent. Thus |J | ≤ N .
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For each i ∈ J , let zi := ⌊λ∗
i ⌋ and yi := λ∗

i − zi. We claim that
∑

i∈J yi <
N − 1. Given this claim, the theorem is proved as follows. The vector s′ :=
s −

∑
i∈J zibi ∈ C ∩ ZN = SC can be written as integer combination of B by

definition, that is, there exists an index set J ′ ⊂ I with b′i ∈ B, λ′
i ∈ Z≥1 for

each i ∈ J ′ such that s′ =
∑

i∈J′ λ′
ib

′
i. This implies that

s = s′ +
∑
i∈J

zibi =
∑
i∈J

zibi +
∑
j∈J′

λ′
ib

′
i.

We see that
∑

i∈J zi +
∑

j∈J′ λ′
i ≤

∑
i∈J λ∗

i by the optimality of (λ∗
i )i∈I . Conse-

quently,
∑

j∈J′ λ′
j ≤

∑
i∈J yi < N − 1, and thus s can be written as an integer

sum of at most |J |+N − 2 ≤ 2N − 2 generators from B.
It remains to prove the claim,

∑
i∈J yi < N −1. Note that if |J | ≤ N −1 this

is trivially true because yi < 1 by definition. So we may assume that |J | = N and
denote J = {1, . . . , N} without loss of generality. Moreover, if the convex hull
V := conv{b1, . . . , bN} has a nonempty intersection with B, say bN+1 ∈ V ∩ B

with bN+1 =
∑N

i=1 γibi for some 0 < γ1, . . . , γN < 1,
∑N

i=1 γi = 1, then we can
write s as

s = ϵbN+1 +

N∑
i=1

(λ∗
i − ϵγi)bi,

where ϵ :=
λ∗
ι

γι
for some ι ∈ argmin{λ

∗
i

γi
: i = 1, . . . , N}. This shows that (µ∗

i )i∈I

with µ∗
i := λ∗

i − ϵγi for each i ∈ J \ {ι}, µ∗
N+1 := ϵ, and µ∗

i = 0 for any
i /∈ J1 := J ∪ {N + 1} \ {ι}, is also an optimal solution to (13). Thus by
replacing J with J1, we can assume that the intersection V ∩B = ∅. Under this
assumption, let s′′ :=

∑N
i=1(1 − yi)bi =

∑N
i=1 bi − s′ ∈ C ∩ ZN . Again by the

definition of B, we can write s′′ =
∑

j∈J′′ λ′′
j b

′′
j , for some finite subset J ′′ ⊂ I,

b′′j ∈ B and λ′′
j ∈ Z≥1 for each j ∈ J ′′. Note that

s = δs′′ +
∑
i∈J

(λ∗
i − δ(1− yi))bi = δ

∑
i∈J′′

λ′′
i bi +

∑
i∈J

(λ∗
i − δ(1− yi))bi,

for some sufficiently small δ > 0, so by the optimality of (λ∗
i )i∈I , we must have

1 ≤
∑

i∈J′′ λ′′
i ≤

∑
i∈J(1 − yi). If

∑N
i=1 yi ≥ N − 1, then this implies that∑

i∈J(1 − yi) = 1, which is a contradiction with our assumption V ∩ B = ∅.

Thus we must have
∑N

i=1 yi < N − 1. ⊓⊔
Remark 4. If we apply the theorem to the case SC = Sn+(Z), thenN = dimSn(R) =(
n+1
2

)
. The bound on the ICR in this case is 2N − 2 = n2 + n− 2, which grows

quadratically with n as opposed to the linear growth in the case of the usual
Carathéodory rank of positive semidefinite matrices. If we apply the theorem to
the case Tn = SOC(n) ∩ Zn, then N = dimSOC(n) = n. The ICR in this case
is 2N − 2 = 2n− 2.
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