
IEICE TRANS. , VOL. E00{A, NO.

1

PAPER

ILIN: An Implementation of the Integer Labeling Algorithm for
Integer Programming

Qiang LIy, Fred JANSSENyy, Zaifu YANGyyy, Nonmembers, and Tetsuo IDAy, Member

SUMMARY In a recent paper, Yang proposes an integer la-

beling algorithm for determining whether an arbitrary simplex

P in Rn contains an integer point or not. The problem under

consideration is a very di�cult one in the sense that it is NP-

complete. The algorithm is based on a speci�c integer labeling

rule and a speci�c triangulation of Rn. In this paper we dis-

cuss a practical implementation of the algorithm and present a

computer program (ILIN) for solving integer programming us-

ing integer labeling algorithm. We also report on the solution

of a number of tested examples with up to 500 integer variables.

Numerical results indicate that the algorithm is computationally

simple, exible, e�cient and stable.

key words: Simplex, integer point, integer labeling algorithm,

integer linear programming

1. Introduction

In the literature, much of the computational work on
integer linear programming has been focusing on prob-

lems with zero-one variables. In contrast, there are rel-

atively few numerical results on dealing with general
integer programming problems. Nevertheless, Cook et

al [1] have recently implemented the generalized ba-

sis reduction algorithm of Lov�asz and Scarf [4] and re-

ported the solution of a number of di�cult problems
with up to 100 integer variables. In this paper we con-

sider the following problem: Given an arbitrary simplex

P , for example, the convex hull of m + 1 (0 <= m <= n)
a�nely independent vectors of Rn, determine whether

P contains an integer point or not. This problem is a

very di�cult one in the sense that it is NP-complete

shown by Yang [8]. Inspired by the work of Scarf [6] and
of van der Laan and Talman [2], [3], Yang [7] develops

an integer labeling algorithm to solve the problem. The

algorithm is based on a speci�c integer labeling rule and
the well-known K1-triangulation of Rn. The main fea-

ture of the algorithm can be described as follows: The

algorithm subdivides Rn into n-dimensional simplices

such that all integer points of Rn are vertices of the
triangulation, and then assigns an integer to each inte-

ger point of Rn according to the labeling rule. Starting

from an arbitrary integer point, the algorithm generates

a sequence of adjacent simplices of varying dimension.

yThe authors are with the Institute of Information Sci-
ences and Electronics, University of Tsukuba, 305 Japan

yyThe author is with the Department of Econometrics,
Tilburg University, 5000 LE Tilburg, The Netherlands.

yyyThe author is with the Institute of Socio-Economic
Planning, University of Tsukuba, 305 Japan

Within a �nite number of steps, the algorithm either

�nds an integer point in P or (exclusively) shows that
there is no integer point in P .

In this paper we discuss a practical implementa-

tion of this algorithm and present a computer program

ILIN for solving integer programs using integer labeling
algorithm. We also report a number of test examples

with up to 500 integer variables. In section 2 we briey

describe the integer labeling algorithm. We discuss a
practical implementation of the algorithm and present

a number of test examples in section 3. Finally, we do

a conclusion in section 4.

2. The integer labeling algorithm

The problem we consider is to test the integer feasibil-

ity of an m-dimensional (0 <= m <= n) simplex P given

by

P = fx 2 Rn j ai>x <= bi; i = 1; � � � ; n+ 1g;

where ai> = (ai1; � � � ; ain) is the i-th row of an (n+1)�
n matrix A for i = 1, � � �, n+1, and b = (b1; � � � ; bn+1)>

is a vector of Rn+1. Throughout the paper we make the

following assumption that a1, � � �, an+1, and b are in-

teger vectors, and that the origin of Rn is contained

in the interior of the convex hull of the vectors a1, � � �,
an+1. Notice that when P is a full-dimensional simplex

in Rn, the latter assumption is ful�lled. As usual, Zn

(Zn

+) denotes the set of all (nonnegative) integer points
in Rn. Let N denote the set f 1; � � � ; n+1 g andN�i the

set N without the index i, for i 2 N . Now we introduce

the following labeling rule.

Labeling Rule: Let a labeling function l : Zn 7!
N[f0g be given as follows. To x 2 Zn the label l(x) = i

is assigned if i is the smallest index for which

ai>x� bi = maxfah>x� bh j a
h>x� bh > 0; h 2 Ng:

If ah>x� bh <= 0 for all h 2 N , then the label l(x) = 0

is assigned to x.

Notice that if there exists a point x 2 Zn satisfy-

ing l(x) = 0, then P contains at least one integer point.
Let T be the K1-triangulation of Rn to be described

later. This simplicial subdivision of Rn is such that the

collection of the vertices of simplices in T is the set of

2
IEICE TRANS. , VOL. E00{A, NO.

all integer points of Rn. Throughout this paper all re-

sults are based on the K1-triangulation. We denote a

simplex with vertices x1, � � �, xn+1 by �(x1; � � � ; xn+1).
Given an n-simplex �(x1; � � � ; xn+1) in T , let

L(�) = fl(x1); � � � ; l(xn+1)g:

An n-simplex � is called a completely labeled (c.l.)

simplex if jL(�)j = n + 1. Speci�cally, an n-simplex
� is called a completely labeled simplex of type I if

L(�) = f0g [N�i for some index i 2 N . An n-simplex

� is called a completely labeled simplex of type II if

L(�) = N . Observe that a completely labeled simplex
of type I has a vertex being an integer point in P .

The algorithm will be applied to any simplex P for

which the (n+ 1)� n matrix A satis�es

(a) a(n+1)j <= 0 for j = 1, � � �, n;

(b) aii > 0 for i = 1, � � �, n;

(c) for each i, j = 1, � � �, n, j 6= i, aij <= 0 and

jaij j < aii.

Such a formulation of the simplex P is referred to as

the standard form. Observe that the standard form
bears many similarities with the classical Hermite nor-

mal form. A procedure for bringing any simplex into its

standard form is given in Yang [7](see also Pnueli [5]).

An integer point �y 2 P is the greatest integer point if
�y >= x for any x 2 P \ Zn. We can easily derive the

following lemma.

Lemma 2.1: Let a simplex P be given in the stan-

dard form. If P contains two integer points x1 and x2,

it also contains the integer point
�x = (maxfx11; x

2
1g; � � � ;maxfx1

n
; x2

n
g)>:

Moreover, P has a unique greatest integer point if P

contains at least one integer point.

Now we introduce the K1-triangulation of Rn. De-
�ne the set f q(1); � � � ; q(n+ 1) g of n+ 1 vectors of Rn

by

q(i) = �e(i); i = 1; � � � ; n; and
q(n+ 1) =

P
n

i=1 e(i);
where e(i) denotes the i-th unit vector of Rn, i = 1,

� � �, n. For a given integer t, 0 <= t <= n, a t-dimensional

simplex or a t-simplex, denoted by �, is de�ned as the
convex hull of t+1 a�nely independent vectors x1, � � �,
xt+1 of Zn. We usually write � = �(x1; � � � ; xt+1) and
call x1, � � �, xt+1 the vertices of �. A (t�1)-simplex be-

ing the convex hull of t vertices of �(x1; � � � ; xt+1) is said
to be a facet of �. If x1 2 Zn and � = (�(1); � � � ; �(n))
is a permutation of the elements of the set f 1; � � � ; n g,
then denote by �(x1; �) the n-simplex with vertices x1,
� � �, xn+1 where xi+1 = xi + e(�(i)) for each i = 1, � � �,
n. The K1-triangulation of Rn is the collection of all

such simplices.

Let v be an arbitrary integer point of Rn. The
point v will be the starting point of the algorithm. De-

�ne for T being a proper subset of N the regions A(T)

by

A(T) = fx 2 Rn jx = v +
P

j2T �jq(j); �j >=
0; j 2 T g:
Notice that the dimension of A(T) equals t with t = jT j.
The K1-triangulation subdivides any set A(T) into t-

simplices �(x1; �(T)) with vertices x1, � � �, xt+1, where
x1 is a vertex in A(T) , �(T) = (�(1); � � � ; �(t)) is a

permutation of the elements of the set T , and xi+1 =

xi + q(�(i)), i = 1, � � �, t. For a proper subset T of

N a (t � 1)-simplex �(x1; � � � ; xt), 1 <= t <= n, is called
T-complete if the t vertices of � carry all labels of the

set T . Note that every vertex y as a zero-dimensional

simplex f y g is f l(y) g-complete in case l(y) 6= 0.
Now the algorithm generates a sequence of adja-

cent t-simplices in A(T) having T -complete common

facets. Formally the steps of the integer labeling algo-

rithm are described as follows.

Algorithm

(1) Set t = 0, x1 = v, T = ;, �(T) = ;, � =< x1 >,

�x = x1, Ri = 0, i 2 N , and Num = 1.

(2) Calculate l(�x) and set L = l(�x). If L = 0, an inte-

ger point is found and the algorithm terminates. If
L is not an element of T , go to Step (4). Otherwise

L = l(xs) for exactly one vertex xs 6= �x of �.

(3) If s = t + 1 and R�(t) = 0, go to Step (5). Oth-

erwise � and R are adapted according to Table 1

by replacing xs. Set Num = Num + 1. Return to

Step (2) with �x equal to the new vertex of �.

(4) If t = n, a completely labeled simplex of type II

is found and the algorithm terminates. Otherwise,
a (T [fL g)-complete simplex is found and T be-

comes T [fL g, �(T) becomes (�(1); � � � ; �(t); L),
� becomes �(x1; �(T)), and t becomes t + 1. Set

Num = Num+1. Return to Step (2) with �x equal
to xt+1.

(5) Let, for some k, k <= t, xk be the vertex of � with
label �(t). Then T becomes Tnf�(t) g, �(T) be-
comes (�(1); � � � ; �(t� 1)), � becomes �(x1; �(T)),

t becomes t� 1, and return to Step (3) with s = k

and Num = Num+ 1.

In the algorithm, Num denotes the number of

steps. In Table 1 the vector E(i) denotes the i-th unit

vector of Rn+1, i 2 N . Without loss of general-
ity we may assume that the algorithm is initiated at

an infeasible integer point v. Notice that every simplex

�(x1; �(T)) generated by the algorithm lies in A(T) and
is a t-simplex of the simplicial subdivision of A(T) in-

duced by the K1-triangulation of Rn. Now in order

to prove the convergence of the algorithm, we need to

borrow some notions from graph theory. First, let us
de�ne a graph consisting of nodes and arcs, denoted by

G = (V;A). We say that a simplex � is a node if and

only if it satis�es one of the following conditions:

LI et al: ILIN: AN IMPLEMENTATION OF THE INTEGER LABELING ALGORITHM FOR INTEGER PROGRAMMING

3

x1 becomes �(T) becomes R becomes

s = 1 x1 + q(�(1)) (�(2); :::; �(t); �(1)) R+E(�(1))

1 < s < t+ 1 x1 (�(1); :::; �(s); �(s� 1); �(s+ 1); :::; �(t)) R

s = t+ 1 x1 � q(�(t)) (�(t); �(1); :::; �(t� 1)) R�E(�(t))

Table 1 Pivot rules if the vertex xs of �(x1; �) is replaced.

.

(a) � = f v g;

(b) � is a t-simplex in A(T) for some proper subset T

of N with t = jT j >= 1 and at least one facet of �
is T -complete.

We say that two nodes �1 and �2 in the graph G are

adjacent and therefore connected by an arc if and only
if both �1 and �2 are in A(T) for some proper subset

T of N , t = jT j, and one of the following cases occurs:

(a) �1 and �2 are both t-simplices and share a common

T -complete facet;

(b) either �1 is a T -complete facet of �2 and �2 is a

t-simplex or �2 is a T -complete facet of �1 and �1
is a t-simplex.

Observe that since the above relationship is symmetric,

the arcs are not necessarily ordered. Finally, we de-
�ne the degree of a node � in the graph by the number

of nodes being connected by an arc to �, denoted by

deg(�). By adopting the standard argument in [2], we

come to the following observation.
Lemma 2.2: Let � be a node in the graph G.

Then

(i) deg(�) = 1 when � = f v g;

(ii) deg(�) = 1 when � is a completely labeled simplex
of type II or � has a vertex labeled with 0;

(iii) deg(�) = 2 in all other cases.

De�ne a subset Cn+1 of Z
n by

Cn+1 = fx 2 Zn j aj>x > bj; for j = 1; 2; :::; n g:

Now we have the following basic result obtained in [7].

Theorem 2.3: (Test Theorem) Let a simplex P

be given in the standard form. Starting with any point

v in Cn+1, the algorithm terminates with either the
greatest integer point in P or a completely labeled sim-

plex of type II indicating that there is no integer point

in P , within a �nite number of iterations.

Proof: It su�ces to consider the case when P contains

at least one integer point. According to Lemma 2.1, P

has a unique greatest integer point, say �y. It is easy

to see that vi > �yi for all i 2 N�(n+1). De�ne an n-
dimensional cube of Rn by

Cn = fx 2 Rn j �y <= x <= 2vg:
We will show that starting with v, the algorithm can

never traverse the boundary of the set Cn. It is equiva-

lent to proving that for any proper subset T of N there
is no T -complete simplex � lying on A(T)\bd(Cn). We

need to consider the following two cases.

Case 1. For any proper subset T of N without element
n+1, we will show that there is no T -complete simplex

� lying on A(T) \ bd(Cn). For each h 2 T , let

D(T; h) = fx 2 Rn j xh = �yh;

�yi <= xi <= vi; i 2 T n fhg;
xj = vj; j 2 N�(n+1) n Tg:

Notice that A(T)\bd(Cn) = [h2TD(T; h). If a simplex

� lies on A(T) \ bd(Cn), there must exist some index

h 2 T such that � is a subset of the set D(T;h). For

any x 2 D(T; h) \ Zn, we have that xh = �yh and for
j 6= h, xj = �yj + �j for some �j >= 0. Furthermore,

since ah>�y � bh <= 0 and
P

j 6=h ahj�j <= 0, we have

ah>x � bh = ahhxh +
P

j 6=h ahjxj � bh
= ahh�yh +

P
j 6=h ahj(�yj + �j)� bh

= ah>�y � bh +
P

j 6=h ahj�j
<= 0:

This implies that l(x) 6= h. Hence there is no

T -complete simplex on D(T; h) since no vertices in

D(T; h) bear the label h 2 T .
Case 2. For any proper subset T of N with element

n+1, we will show that there is no T -complete simplex

� lying on A(T)\bd(Cn). For any x 2 Cn\Zn, we have

that for each j 2 N�(n+1), xj = �yj+�j for some �j >= 0.

Since a(n+1)>�y � b(n+1) <= 0 and
P

n

j=1 a(n+1)j�j <= 0,

we have

a(n+1)>x � b(n+1) =

a(n+1)>�y� b(n+1) +
P

n

j=1 a(n+1)j�j
<= 0:

This implies that l(x) 6= n + 1. Hence there is no T -

complete simplex on A(T)\ bd(Cn) since no vertices in
Cn carry the label n + 1 2 T .

Now we can conclude from the above discussions

that starting with v, the algorithm can never traverse
the boundary of the set Cn. Since the number of sim-

plices in Cn is �nite and no vertices in Cn have the label

n + 1, it follows from Lemma 2.2 that within a �nite

number of steps, the algorithm must terminate with a
simplex �� with a vertex, say w, having the label 0.

Because �y is the unique vertex in Cn with l(�y) = 0, w

must be equal to �y. This completes our proof. 2

4
IEICE TRANS. , VOL. E00{A, NO.

���������������������
a2

B
BM

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@@

a3��	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

a1
HHj

x1

x2
v

?

?�
�
���AAK�

�	
?����

�
��

2 2 1 1 1

2 2 2 2 1

2 2 2 2 2

2 2 2 2 2

2 1 1 1 1

0 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2211

2222

2222

2222

2222

3333

3333

3333

3333
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�

�
�
�
��

�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�

�
�
�
��

�
��

6

Fig. 1 The path of the algorithm leads to an integer point in

P for Example 2.5.

Let A�(n+1) be the matrix of A without the last

row and b�(n+1) the vector of b without the last compo-

nent. Let xR = A�1
�(n+1)b�(n+1). It is clear that x

R >= x

for all x 2 P . Let xI = (bxR1 c; � � � ; bx
R

n
c)> where bxc

denotes the lower integer part of a real number x. It

is also easy to see that xI >= y for all y 2 P \ Zn. By
sightly modifying the proof of Theorem 2.3, we have

the following corollary.

Corollary 2.4: Let a simplex P be given in the
standard form. Starting with any integer point v >= xI ,

the algorithm terminates with either the greatest inte-

ger point in P or a completely labeled simplex of type

II indicating that there is no integer point in P , within
a �nite number of iterations.

From Theorem 2.3 and Corollary 2.4 we can easily

see that the algorithm in fact gives an algorithm for
solving the integer linear programming problem

minimize a(n+1)>x;

subject to ai>x <= bi; i = 1; � � � ; n;
x 2 Zn;

under the assumption that the origin of Rn is contained

in the interior of the convex hull of the vectors a1, � � �,
an+1.

Let us illustrate the algorithm by one example.

Example 2.5: The simplex is given by

P = fx 2 R2 j ai>x <= bi; i = 1; � � � ; 3 g;

where a1 = (2;�1)>, a2 = (�1; 3)>, and a3 =

(�1;�1)>, b1 = 1, b2 = �1, and b3 = 1.
The path generated by the algorithm from v = (4; 4)>

leads to the integer point (0;�1)> in P and are shown

in Figure 1.

3. Implementation and Experiment

ILIN (Integer Labeling algorithm for INteger program-
ming) is an experimental software developed for solving

integer programming problems by using integer label-

ing algorithm. It is written in C language and running
on Sun UltraSparc. To be more speci�c, ILIN enables

the user to solve the integer programming problem with

which simplex P is the standard form. ILIN provides

several input options: for instance, one may select some
test problems existing to test the system, or select ran-

dom generation to generate integer programming prob-

lems by random, or input the prepared integer program-
ming problems that you need to solve.

In implementation of integer labeling algorithm,

we �rst need to �nd a starting integral point v >= xI

in Corollary 2.4. We use Gauss method to compute

xR = A�1
�(n+1)

b�(n+1), where A�(n+1) is the matrix ofA

without the last row and b�(n+1) the vector of b without

the last component. Compute xI = (bxR1 c; � � � ; bx
R

n
c)>.

We can see starting with the point xI , the integer label-

ing algorithm terminates with either the greatest inte-

gral point in simplex P or a completely labeled simplex
of type II indicating that there is no integral point in P,

within a �nite number of iterations. In practical imple-

mentation, the method starting with xI is much faster

than that starting with any other integral point v >= xI ,
especially for the integer programming problems with

100 or more variables.

The integer labeling algorithm is the core of our in-
teger programming method. As we outlined in section

2, ILIN proceeds as follows(keeping in mind that we al-

ways work with the standard form). We have two func-
tions Label(�x) where �x is a integer point of the simplex

�(x1; � � � ; xt), 1 <= t <= n and Update(s; �x;�). Func-

tion Label(�x) calculates l(�x) by using Labeling rule, if

l(�x)=0, the greatest integer point in simplex P is found
and the system terminates, otherwise if t=n(n is the

number of variables), a completely labeled simplex of

type II is found i.e. there is no solution for simplex
P and the system terminates. Function Update(s; �x;�)

updates the simplex �(x1; � � � ; xt) according to Table

1 in section 2 and assigns a new vertex of � to �x. By

Corollary 2.4, it is guaranteed that the system ILIN call
the two functions recursively according to the integer

labeling algorithm and terminates with either the great-

est integer point in simplex P or a completely labeled
simplex of type II .

We run the system ILIN with four test problems.

The �rst three test problems(Example 3.1-3.3) are spe-

cial examples with integer matrices A and right hand
sides b generated by some functions, while the fourth

is random example with random integer matrices A of

various sizes(ranging from 101� 100 to 501� 500) and

LI et al: ILIN: AN IMPLEMENTATION OF THE INTEGER LABELING ALGORITHM FOR INTEGER PROGRAMMING

5

c the greatest integer point or no integer solution steps

�10 no integer solution 1457

�2 no integer solution 1682

10 (0; 0; 0; 0; 0; 0; 0; 0;0; 0) 1450

50 (0; 0; 0; 0; 0; 0; 0; 0;0; 0) 1450

250 (31; 29; 26; 23; 21; 18; 15; 12;9; 6) 2444

500 (136; 125; 113; 102;90; 78; 65; 52; 39; 25) 2799

900 (294; 270; 246; 221; 195; 168; 141; 113; 84; 54) 2189

1000 (343; 316; 287; 258; 228; 197; 165; 132; 98; 63) 2382

2500 (906;833; 758; 680; 601; 519; 435; 348; 258; 166) 2421

5000 (1869; 1718; 1563; 1404; 1240; 1071; 897; 717; 532; 342) 2752

7500 (2842;2613; 2377; 2135; 1885; 1628; 1364; 1091; 810; 520) 1843

10000 (3811; 3504; 3188; 2863; 2528; 2184; 1829; 1463;1086; 697) 2269

Table 2 Tested instances of Example 3.1 by the IL algorithm for n = 10.

k, c the greatest integer point or no integer solution steps

400, 3847 (94; 87; 78; 71;62; 55; 44; 37; 25; 19)> 198

400, 3848 no integer solution 198

500, 4848 (118; 109; 99; 90; 78; 69; 56;47; 32; 23) 184

500, 4849 no integer solution 184

600, 5899 (144; 133; 120; 109; 95; 84; 68; 57; 39; 28) 171

600, 5900 no integer solution 171

700, 6811 (166; 153; 139; 126; 110;97; 79; 65; 46; 32) 202

700, 6812 no integer solution 202

Table 3 Tested instances of Example 3.2 by the IL algorithm for n = 10.

n, k, c steps of the IL algorithm yes or no

10, 10, 100 103 no

20, 100, 100 122 yes

30, 200, 500 316 yes

40, 500, 1500 424 yes

50, 1000, 4000 533 yes

60, 2000, 5000 388 yes

70, 4000, 9000 212 yes

80, 5000, 8000 224 yes

90, 6000, 7000 267 yes

100, 600, 7000 6228 yes

110, 400, 7000 8792 yes

Table 4 Tested instances of Example 3.3 by the IL algorithm.

random right hand sides b. The results of the experi-

ments will be reported as follows.

Let P = fx 2 Rn j Ax <= bg be a simplex in
the standard form. Our goal is to test whether P con-

tains an integer point or not. Recall that the Fibonacci

numbers are de�ned by f (k + 2) = f(k + 1) + f (k),
k = 1, 2, � � �, with f(1) = f (2) = 1. We will use the

Fibonacci numbers later. In the following, the integer

labeling algorithm will be abbreviated to the IL algo-

rithm. Moreover, \yes" means P contains an integer
point and \no" means P contains no integer point. In

Table 2 where bi = f(i) + c, i 2 N , we give several

instances of Example 3.1 for n = 10. In Table 3 where

bi = i(�1)in + k, i = 1, � � �, n, and bn+1 = �c, k and

c are positive integers, we give several instances of Ex-

ample 3.2 for n = 10.

Example 3.1 The coe�cients of A = (aij) are

given by
aij = �n(n+ 2� i) + j � 1; j 6= i; i; j = 1; � � � ; n;
a(n+1)j = �j; j = 1; � � � ; n;
aii =

P
j2N;j 6=i jajij; i = 1; � � � ; n:

Example 3.2 The coe�cients of A = (aij) are

given by

aij = �(n� i+ 1); i 6= j; i; j = 1; � � � ; n;

6
IEICE TRANS. , VOL. E00{A, NO.

n result of the IL algorithm steps

100 the greatest integer point 9741

200 the greatest integer point 26048

300 the greatest integer point 76303

400 the greatest integer point 317694

500 the greatest integer point 1540189

Table 5 Tested instances of Example 3.4

a(n+1)j = �(n� j + 1); j = 1; � � � ; n;
aii = n(n+ 1)=2; i = 1; � � � ; n:

Example 3.3 The coe�cients of A = (aij) are

given by

aij = �1; i 6= j; i = 1; � � � ; n+ 1; j = 1; � � � ; n;
aii = n+ 1; i = 1; � � � ; n:

In Table 4 where bi = i(�1)in + k, i = 1, � � �, n,
and bn+1 = �c, k and c are positive integers, we give
several instances of Example 3.3. We remark that this

example is relatively easier than the �rst two examples.

This is explained in Yang [7].

Example 3.4 is an instance with randomly gener-

ated integer matrices A of various sizes (ranging from

101� 100 to 501� 500) and random right hand sides
b with nonnegative entries in a range between 1 and

9999. The result of the test is shown in Table 5.

Example 3.4 The coe�cients of A = (aij) are
given by

�10 <= aij <= �1; j 6= i; i; j = 1; � � � ; n;
�10 <= a(n+1)j <= �1; j = 1; � � � ; n;
aii =

P
j2N;j 6=i jajij; i = 1; � � � ; n:

4. Conclusion

We have presented the system ILIN as an implementa-

tion of the integer labeling algorithm for integer pro-
gramming and reported on solution of a number of

tested examples with up to 500 integer variables. ILIN

with its user manual and many tested examples are

publicly available to the interested reader on request.
We are particularly interested in having practitioners

of integer programming test our program, and to pro-

vide us with feedback and suggestions. It is our belief
that there is still much room for further improvements

in the e�ciency and applicability of the integer labeling

approach.

References

[1] W.Cook, T.Rutherford, H.Scarf and D.Shallcross, An Im-

plementation of the generalized basis reduction algorithm.

ORSA Journal on Computing 5(1993) 206-212.

[2] G.van der Laan and A.J.J. Talman, A restart algorithm for

computing �xed points without an extra dimension. Mathe-

matical Programming 17(1979)74-84.

[3] G.van der Laan and A.J.J. Talman, A class of restart �xed

point algorithms without an extra dimension. Mathematical

Programming 20(1981)33-48.

[4] L.Lov�asz and H.Scarf,The generalized basis reduction algo-

rithm. Mathematics of Operations Research 17(1992) 751-

764

[5] A.Pnueli, A method of truncated relaxation for integer pro-

gramming. unpublished manuscript, IBM, YorktownHeights,

1968.

[6] H.Scarf, Production sets with indivisibilities-part I: general-

ities. Econometrica 49(1981)1-32.

[7] Z.Yang, Simplicial Fixed Point Algorithms and Applications

Ph.D. Thesis, Tilburg University, Tilburg, 1996.

[8] Z.Yang, An integer labeling algorithm for testing the integral

feasibility of arbitrary simplices, manuscript, Tilburg Uni-

versity, Tilburg, 1996.

Qiang Li received B.S. degree and

M.S. degree in computer science from

Sichuan University in China in 1984 and

1987. He is now a Ph.D. student in In-

stitute of Information Sciences and Elec-

tronics, University of Tsukuba. His re-

search interests include parallel constraint

solving and parallel optimization based on

symbolic computation.

Fred Janssen received B.S. degree

and M.S. degree in mathematics and com-

puter science from Eindhoven University

of Technology, the Netherlands. He is cur-

rently a Ph.D. student at Tilburg Uni-

versity, the Netherlands. His research in-

terest includes inventory theory, queuing

theory and stochastic optimization.

Zaifu Yang received M.S. degree in

applied mathematics from Xidian Uni-

versity, China in 1989 and Ph.D. degree

from Tilburg University, the Netherlands

in 1996. He is now a post-doctor fel-

low of the JSPS at the University of

Tsukuba. His research interests include

mathematical programming, mathemati-

cal economics and mathematical �nance.

He has published in SIAM Journal on

Control and Optimization, Mathematics

of Operations Research, Journal of Mathematical Economics and

some other journals.

Tetsuo Ida is a professor at the Uni-

versity of Tsukuba, where he leads a

research group of symbolic computation

LI et al: ILIN: AN IMPLEMENTATION OF THE INTEGER LABELING ALGORITHM FOR INTEGER PROGRAMMING

7

(SCORE) in the institute of information

sciences and electronics. His research

includes parallel and distributed sym-

bolic computation, integration of func-

tional and logic programming and term

rewriting. He is an editor of the Journal

of Symbolic Computation, the Journal of

Functional and Logic Programming and

Texts and Monographs in Symbolic Computation. He is a mem-

ber of the IEICE, the IPSJ, the JSSST, the Association of Logic

Programming and the IEEE Computer Society. He received a

Doctor of Science from the University of Tokyo.

