MATH 16C: MULTIVARIATE CALCULUS

Jesús De Loera, UC Davis

April 12, 2010

Jesús De Loera, UC Davis [MATH 16C: MULTIVARIATE CALCULUS](#page-18-0)

7.1 : The 3-dimensional coordinate system

Thus, $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$. **EXAMPLE:** Find the distance between $(-3, 2, 5)$ and $(4, -1, 2)$.

$$
d = \sqrt{((-3)-4)^2 + (2-(-1))^2 + (5-2)^2} = \sqrt{49+9+9} = \sqrt{67}.
$$

Mid-point between two points

- What is the mid-point between two points (x_1, y_1, z_1) and $(x_2, y_2, z_2)?$
- Let (x_m, y_m, z_m) be the mid-point. Then x_m must be half-way bewteen x_1 and x_2 , so $x_m = \frac{x_1 + x_1}{2}$.
- Also, y_m must be half-way between y_1 and y_2 , so $y_m = \frac{y_1 + y_2}{2}$
- Similarly, z_m must be half-way between z_1 and z_2 , so $z_m = \frac{z_1+z_2}{2}.$
- **o** Thus.

$$
(x_m, y_m, z_m) = \left(\frac{x_1 + x_1}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right).
$$

E.g. What is the midpoint bewteen (−3, 2, 5) and (4, 1, 2)?

$$
(x_m, y_m, z_m) = \left(\frac{(-3) + 4}{2}, \frac{2 + 1}{2}, \frac{5 + 2}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}, \frac{1}{2}\right).
$$

Question:

If we fix a point (a, b, c) , what is the set of all points at a distance r from (a, b, c) called? **Answer:** A SPHERE centered at (a, b, c) .

$$
\sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2} = r \Leftrightarrow (x-a)^2 + (y-b)^2 + (z-c)^2 = r^2.
$$

QUIZ: What is the equation of the sphere with center $(2, -3, 8)$ and radius 5?

$$
(A)(x-2)^{2}+(y+3)^{2}+(z-8)^{2}=25 \text{ or } (B)(x+2)^{2}+(x-3)^{2}+(x+8)^{2}=5
$$

PROBLEM: Let $x^2 - 2x + y^2 + 4y + z^2 - 8z - 15 = 0$, find the center and radius of this sphere.

Rewrite the equation by completing the square:

$$
x2 - 2x = (x2 - 2x + 1) - 1 = (x - 1)2 - 1
$$

\n
$$
y2 + 4y = (y2 + 4y + 4) - 4 = (y + 2)2 - 4
$$

\n
$$
z2 - 8z = (z2 - 8z + 16) - 16 = (z - 4)2 - 16
$$

So,

$$
x2-2x + y2 + 4y + z2 - 8z - 15 = (x - 1)2 - 1 + (y + 2)2 - 4 + (z - z)2
$$

= (x - 1)² + (y + 2)² + (z - 4)² - 36

The equation of the sphere is $(x - 1)^2 + (y + 2)^2 + (z - 4)^2 = 36$. Jesus De Loera, UC Davis MATH 10C: MULTIVARIATE CALCUI [MATH 16C: MULTIVARIATE CALCULUS](#page-0-0)

The equation of a plane in 3-dimensions is $Ax + By + Cz = D$ where A, B, C, D are constants.

How do you draw a plane?

We use x, y, z -axis intercepts to find 3 points on the plane. **EXAMPLE:** Draw $x + 2y + 3z = 6$

- x-intercept is $y = 0$, $z = 0 \Rightarrow x = 6$.
- v-intercept is $x = 0$, $z = 0 \Rightarrow y = 3$.
- z-intercept is $y = 0$, $x = 0 \Rightarrow z = 2$.

Jesús De Loera, UC Davis [MATH 16C: MULTIVARIATE CALCULUS](#page-0-0)

But, there aren't always x -axis or y -axis or z -axis intercepts!! **EXAMPLE:** Draw the planes (a) $x = 3$, (b) $y = 4$. (a) $x = 3$. The plane is parallel to the yz-plane. There are no

y-axis or z-axis intercepts.

(b) $y = 4$. The plane is parallel to the xz-plane. There are no x-axis or z-axis intercepts.

Section 7.2: Surfaces

Jesús De Loera, UC Davis MATH 16C: MULTIVARIATE CALCULUS

LAST EPISODE...

Jesús De Loera, UC Davis MATH 16C: MULTIVARIATE CALCULUS **• Theorem** Every quadric surface has an equation of the form:

$$
Ax^2 + By^2 + Cz^2 + Dx + Ey + Fz + G = 0
$$

where A, B, C, D, E, F, G are constants.

- CHALLENGE: Recognize the shape of the surface from Equation!!!!
- **Strategy:** Find and graph the intersection of the surface with the planes $x = c$, $y = c$, or $z = c$ where c is some constant. We SLICE the surface!! We do a CT-scan!!!
- The intersection of a surface with a plane $x = c$, $y = c$, or $z = c$ is called a **TRACE**.
- **Idea:** As we sweep the planes of intersections we get an idea of volume, we then join all slices to reconstruct a 3-D figure.
- **EXAMPLE:** Graph the quadric surface $z = x^2 + y^2$.

The intersection of the surface with the plane $x = 0$ is the parabola $z = y^2$ lying on the yz-plane. Graph it

What happens if we slice with x $=$ 1? Result is $z=1+y^2$, another parabola.

Next Graph the intersection of the surface with the plane $y = 0$ is the parabola $z = x^2$ lying on the xz-plane.

What happens if we slice with y $=$ 2?, another parabolar $z = x^2 + 4$.

Graph the intersection of the surface with the plane $z = 0$ is the point $(x, y, z) = (0, 0, 0)$ since $z = 0$ implies $0 = x^2 + y^2$. SUPER EASY, a point is Trace!! Graph the intersection of the surface with the plane $z = 1$ is the circle or radius one centered at $(0, 0, 1)$, which lies on the plane $z = 1$.

Similarly, graph the intersection of the surface with the planes $z=2,3,4,...$ each one gives a circle of radius $\sqrt{2},\sqrt{3},\sqrt{4},...$ with center $(0, 0, 2), (0, 0, 3), (0, 0, 4), \ldots$ respectively.

The surface $z = x^2 + y^2$ has a bowl shape. It is called an elliptic paraboloid.

tada! A BOWL (the Elliptic Paraboloid)

Elliptic Paraboloid

$$
z = x^2 + y^2
$$

• The general equation of the surface is

$$
\pm(z-z_0)=\frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}
$$

- \bullet a and b are non-zero constants that stretch or contract the graph in the x and y directions respectively, and where (x_0, y_0, z_0) is the point at the base of the bowl.
- Note: the coefficient of $(z z_0)$ may be negative, in which case, the bowl is upside-down. The surface $-z = x^2 + y^2$ is an upside-down bowl shape.

- \bullet It is possible to change the roles of the x, y and z variables giving the an elliptic paraboloid, which is orientated differently in 3-dimensional space.
- We distinguish amongst the different orientations by noting which axis (x -axis, y -axis, or z -axis) goes through the center of the paraboloid.
- The axis of the elliptic paraboloid $z = x^2 + y^2$ is the z-axis. Also, $x = y^2 + z^2$ is an elliptic paraboloid with axis the x-axis.
- The surface $y = x^2 + z^2$ is an elliptic paraboloid with axis the y-axis

EXAMPLE graph the quadric surface $z = x^2 - y^2$. The surface looks like a horse saddle. It is called a hyperbolic paraboloid.

The following table lists the traces given by intersecting the hyperbolic paraboloid $z = x^2 - y^2$ with a plane (c is a constant).

• The general equation of the hyperbolic paraboloid is

$$
\pm(z-z_0)=\frac{(x-x_0)^2}{a^2}-\frac{(y-y_0)^2}{b^2}
$$

where a and b are scaling factors, and where (x_0, y_0, z_0) is the point at the center of the saddle.

• The main axis of the hyperbolic paraboloid is given by the non-quadratic variable.

tada! A HORSE SADDLE (the Hyperbolic Paraboloid)

Jesús De Loera, UC Davis MATH 16C: MULTIVARIATE CALCULUS The simplest form of an **Ellipsoid** is

$$
\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1
$$

. An ellipsoid, a sphere that has been stretched or squeezed in some axis directions.

The traces given by intersecting an with a plane $(c$ is a constant).

Plane Trace

\n
$$
x = d
$$
\nellipse: $\frac{z^{2}}{c^{2}} + \frac{y^{2}}{b^{2}} = 1 - \frac{d^{2}}{a^{2}}$

\n
$$
y = d
$$
\nellipse: $\frac{z^{2}}{c^{2}} + \frac{x^{2}}{a^{2}} = 1 - \frac{d^{2}}{b^{2}}$

\n
$$
z = d
$$
\nellipse: $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 - \frac{d^{2}}{c^{2}}$

\nEXAMPLE: $\frac{x^{2}}{2^{2}} + y^{2} + \frac{z^{2}}{(\frac{1}{2})^{2}} = 1$

$$
\overbrace{\text{M}}^{r}
$$

• The general equation of an ellipsoid is

$$
\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} + \frac{(z-z_0)^2}{c^2} = 1
$$

where a, b and c are scaling factors, and where (x_0, y_0, z_0) is the point at the center of the ellipsoid.

- Note that if $a > 1$, $b > 1$ or $c > 1$, then the ellipsoid looks like sphere that has been stretched in the x -axis, y -axis or z-axis direction respectively.
- Similarly, if $a < 1$, $b < 1$ or $c < 1$, then the ellipsoid looks like a sphere that has been squeezed in the x -axis, y -axis or z -axis direction respectively.

tada! A FOOTBALL (Ellipsoid)

A basic **HYPERBOLOID** has the basic form $x^2 + y^2 - z^2 = c$ where c is some constant.

There are three hyperboloids depending on the value of c:

- **1** If $c = 0$, **Elliptic cone**;
- \bullet $c = 1$, Hyperboloid of one sheet;
- \bullet $c = -1$ Hyperboloid of 2 sheets

Elliptic Cone

The basic form of an elliptic cone is $x^2 + y^2 - z^2 = 0$.

Traces given by intersecting with a plane $(c$ is a constant).

- The axis of the elliptic cone $x^2 + y^2 z^2 = 0$ is the z-axis, which goes through the center of the cone.
- Note that for $x^2 + z^2 y^2 = 0$ is an elliptic cone with axis the y-axis, and $y^2 + z^2 - x^2 = 0$ is an elliptic cone with axis the x-axis.
- The general form of an elliptic cone is

$$
\frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}-\frac{(z-z_0)^2}{c^2}=0.
$$

Hyperboloid of one sheet

The basic form of a hyperboloid of one sheet is $x^2 + y^2 - z^2 = 1$.

Traces given by intersecting with a plane $(c$ is a constant).

- The axis of the hyperboloid $x^2 + y^2 z^2 = 1$ is the z-axis, which goes through the center of the cone.
- Note that for $x^2 + z^2 y^2 = 1$ is hyperboloid with axis the y-axis, and $y^2 + z^2 - x^2 = 1$ is a hyperboloid with axis the x-axis.
- The general form of a hyperboloid of one sheet is

$$
\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} - \frac{(z-z_0)^2}{c^2} = 1.
$$

Hyperboloid of two sheets

The basic form of a hyperboloid of two sheets is $x^2 + y^2 - z^2 = -1.$

Traces given by intersecting the some plane $(c$ is a constant).

Plane	Trace	
$x = c$	hyperbola	$y^2 - z^2 = -1 - c^2$
$y = c$	hyperbola	$x^2 - z^2 = -1 - c^2$
Jesús De Lorea, UC Davis	MATH 16C: MULTIVARIATE CALCULUS	

- The axis of the hyperboloid $x^2 + y^2 z^2 = -1$ is the z-axis, which goes through the center of the cone.
- Note that for $x^2 + z^2 y^2 = -1$ is a hyperboloid with axis the y-axis, and $y^2 + z^2 - x^2 = -1$ is a hyperboloid with axis the x-axis.
- The general form of a hyperboloid of one sheet is

$$
\frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}-\frac{(z-z_0)^2}{c^2}=-1.
$$

Summary of types of quadric surfaces.

When classifying a quadric surface:

- ¹ learn to compute TRACES and to reconstruct the 3-D figure from looking at the traces.
- 2 Memorize the Summary table and names (Pages: 468-469).
- ³ decide whether it is an ellipsoid, paraboloid, or hyperboloid. How? From traces and degrees of variables present!!!
- ⁴ Then decide what type it is (e.g., elliptic paraboloid?). How? From Traces and signs of non-zero coefficients.
- \bullet what the axis of the surface is (i.e., x-axis, y-axis, or z-axis) (note that an ellipsoid has no axis). How? From traces, signs or degree determine the main axis and orientation.

1 Classify the surface $\frac{x^2}{2} - \frac{y^2}{4} + \frac{z^2}{3^2}$ $\frac{z^2}{3^2}=0.$

This surface is an elliptic cone with axis the y-axis. Recall that the axis of the elliptic cone is the axis that goes through its middle and is the variable with a negative sign.

2 Classify the surface $\frac{x^2}{2^2}$ $\frac{x^2}{2^2} + \frac{y^2}{3^2}$ $\frac{y^2}{3^2} + \frac{z^2}{2^2}$ $\frac{z^2}{2^2}=1.$ This surface is an ellipsoid.

Classify the surface $4x^2 - y^2 + z^2 - 4z = 0$.

$$
4x2 - y2 + z2 - 4z = 0
$$

\n
$$
\Leftrightarrow 4x2 - y2 + (z - 2)2 - 4 = 0
$$

\n
$$
\Leftrightarrow x2 - \frac{y2}{22} + \frac{(z - 2)2}{22} - 1 = 0
$$

\n
$$
\Leftrightarrow x2 + \frac{(z - 2)2}{22} - \frac{y2}{22} = 1
$$

Surface is a hyperboloid of one sheet with axis the y axis. The axis