Elementary Matrices

In this special handout of material not contained in the text, we introduce the concept of
elementary matrix. Elementary matrices are useful in several ways that will be shown in this
handout. One important use that we will examine first is that elementary matrices can be used to
carry out elementary row operations. This means that if you want to interchange two rows, or
multiply a row by a constant and add it to another row, or multiply some row by a non-zero
constant, it can be done using an elementary matrix. The definition given next shows that
elementary matrices can be created by applying elementary row operations to the identity matrix.

Definition: An nxn matrix E is an elementary matrix if it can be obtained by performing a single

elementary row operation on the identity matrix L;-

Some examples of elementary matrices for n = 3 and for each of the elementary row operations
are

001
E| = (1) é g , which is obtained by interchanging the first row and third rows of I3,
J
-1 60
Ey = 8 (1) (1) which is obtained by multiplying the first row of I3 by -1, and
*
1 00
Ey = ‘62 (l) (1) which is obtained by multiplying the first row of I3 by -2 and adding it to

the second row of I3. The subscripts on E have no particular meaning but are just used to

distinguish one elementary matrix from the next.

An elementary row operation can be carried out by its corresponding elementary matrix through
matrix multiplication. For example, suppose we wish to interchange the first and third rows of
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the matrix A = . This can be done by multiplying A on the left by the elementary
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matrix E|, given above, to yield
E|A = 2 -6 2
01

Suppose we then wish to perform the elementary row operation of multiplying the first row by

-1, we can do this by multiplying by E, which then gives

O

E2E1A =

el SR
——é\w
1
et

We can then perform on this result the elementary row operation of multiplying the first row by

-2 and adding it to the second row using E3 to obtain
1
E3EyE[ A = 8

If our goal is to obtain rref for A, then we would continue with the following elementary
matrices to

100
switch rows 2 and 3 we do this to I3 toobtain E4 = 8 (1) (1) and applying this to the
previous result we get
30
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then to multiply row 2 by 3 and add it to row 1 we do this to I3 toobtain Eg =

and applying this to the previous result we obtain
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EsE4E3E B[ A = 8

10 0
then to multiply row 3 by 1/2 we use the elementary matrix E¢ = 8 (1) 1(/)2 to get
10-3
E¢EsE4E3EyEj A = 01 -1
6 =54 B3 By by 00 1
. 103
then to multiply row 3 by 3 and add it to row 1 we use Eq = 8 (1) (1) to obtain
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and finally, to add row 3 to row 2 we use Eg =
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Note that the last equation is Eg Ey E¢ Eg E4 E3 E Ef A = I3. Thus the product
Eg E7 Eg E5 E4 E3 Ey E| must be the inverse of A and this gives us another way of computing

the inverse of A. Note that carrying out the product

3322 .
E8E7E6E5E4E3 E2E1= (1) i;% { = A~

Elementary matrices have another important property given in the next theorem.

Theorem 1. Every elementary matrix has an inverse, which is also an elementary matrix.
Proof: We won't give a formal proof but will suggest two reasons why it is true. First, since
every elementary row operation can be reversed, one would expect that this can be represented
by an elementary row operation which is an elementary matrix. Second, it is easy to construct
the inverse of an elementary matrix. Here are the three cases:

1. If E interchanges two rows, then E is its own inverse. (Why?)

2. If E multiplies a row by a non-zero constant ¢, then its inverse is the elementary matrix that
multiplies a row by 1/c. *

3. If E multiplies row i by ¢ and adds it to row j, the its inverse is the elementary matrix that
multiplies row i by -c and adds it to row j.

For the elementary matrices used in the example above here are their inverses which are also
elementary matrices
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Theorem 2. (a). Every mxn matrix A can be decomposed as a product of elementary matrices
and a matrix R that is rref, that is,

A=E; . Eg; E(R (1)

where F ; are elementary matrics and R is rref.

(b). If Aisnxnand has an inverse, then R is the identity matrix and A is
decomposable into the-product of elementary matrices, that s,

A= El"'ES~l ES (2)

Proof of (a). Since every matrix A can be put into rref by row operations and since every row
operation can be represented by an elementary matrix we have, where R is rref,

Eg... EfA= R _ 3

By Theorem | each E; has an inverse that is an elementary matrix. If we let E j denote its

inverse and multiply equation (3) on both sidesby Ey ... £ | E s we obtain equation (1).

Proof of (b). If A has an inverse, then R is the identity in equation (1) and so we obtain equation
(2). End of proof.

-1 -1
From the example before Theorem 2, we have that (Ey) ...(Eg) = A.



Elementary Matrices and Determinants

The determinants of elementary matrices are very easy to compute and together with Theorem 2
can be used to prove some very important properties of nxn matrices and their determinants. The
main theorem is

Theorem 3. The determinant of an elementary matrix E is given as follows:

(a). det (E) = -1, if E interchanges two rows.

(b). det(E) = ¢, if E multiplies a row by a non-zero constant c.

(c). det(E) = 1, ifIfE multiplies row i by c and adds it to row j.

Proof of (a). This follows from Theorem 3.2 in the text. However, it is easy to prove it based on

the fact that det(I,)) = aj, ay) ...8y, , where a;; = 1, so when we interchange rows i and j, the

term ajjayy ... aji aij .--8pp is the determinant of E except possibly for its sign. But we

see that the columns have been permuted and thus the sign would change to -1.

Proof of (b). E is just the same as I, except for a non-zero constant ¢ in place of ag;

to give det(E)= ap a22’ ... C... aap, = c since all of the other terms equal 1.

Proof of (c). The elementary matrix E is that same as L, except for one element c that is not on

the main diagonal. This value ¢ is multiplied by a 0 in any term that appear in the determinant of
E since the only other non-zero terms in E are the 1's on the main diagonal. End of theorem.

The proof above will be clearer if you take a few minutes to compute the determinants of typical
3x3 elementary matrices.

Theorem 4. If E is an elementary matrix and B is an nxn matrix,
then det(E B) = det(E)det(B).

Proof. Case 1. If E interchanges two rows, then by Theorem 3.2 in the text, det(E B) = - det(B).



Since det(E) = -1 by Theorem 3, then det(E B) = det(E) det(B).

Case 2. If E multiplies a row by a non-zero constant, then by Theorem 3.5 in the text, det(E B)
=c det(B). Again, by Theorem 3, det(E) = ¢, so det(EB) = det(E) det(B).

Case 3. If E multiplies row i by ¢ and adds it to row j, then by Theorem 3.6 in the text, det(E B)
=det(B). Again, by Theorem 3, det(E) = 1, so det(E B) = det(E) det(B).

Elementary matrices can now be used to prove that det(AB) = det(A) det(B).
Theorem 5. (Theorem 3.8 in the text).
If A and B are nxn matrices, then det(AB) = det(A) det(B).

Proof. We will give part of the proof in a special case where A and B are non-singular and leave
the remainder of the proof to the reader. Suppose A and B are non-singular. Then by Theorem

20) A= F{..E; andB= B, .. B, andso

AB= B .. E B, .. B,

where all of the E's are elementary matrices. By Theorem 4,

det(AB) = det (E )det(F, ... B B, ... £)

We can repeat using Theorem 4 to obtain
A A
det(AB) = det (E ) det(E ) ... det(E g)det(E ) ... det(E
But then it is easy to show that det(A) = det (E ) det(E ) ... det(E ¢)and

det(B) = det(ﬁ 1) det(ﬁ +) which proves the result when A and B are non-singular.

Exercises



1. a. Determine the elementary matrix for each step in Example 5 in Sec. 1.6 of the text.

b. Show Al asa product of elementary matrices and verify by multiplying out the matrices
that the product is the inverse of A.

. Show A as a product of elementary matrices and verify by multiplying out the matrices that
the product is A.

2. a. Determine the elementary matrix for each step in Example 6 in Sec. 1.6 of the text.

b. Verify Theorem 2(a) for A.

3. Show that Theorem 3 holds for the elementary matrices Ej ... Eg in the main example in
this handout.

4. Compute the determinant of A in the main example in this handout by using only elementary
matrices in conjunction with the Theorems in this handout.



