1. (5 points) Find a basis for the nullspace of the matrix (as always, give all details):

$$\left[\begin{array}{cccc} 1 & 2 & -3 & 1 \\ -1 & 0 & 3 & 4 \end{array}\right]$$

Reduced row echelon form is

$$\begin{bmatrix} 1 & 0 & -3 & -4 \\ 0 & 1 & 0 & 5/2 \end{bmatrix}$$
. This means that

a basis for nullspace is =
$$\begin{cases} \begin{pmatrix} -3 \\ 0 \end{pmatrix} \begin{pmatrix} -4 \\ 5/2 \\ 0 \end{pmatrix} \end{cases}$$

2. (6 points) State the definition of a set of linear independent vectors. For what values of λ is the set of vectors $\{(\lambda^2 - 5, 1, 0), (2, -2, 3), (2, 3, -3)\}$ linearly independent? For what values is it a basis for R^3 ? Give details! Answer the same questions for the following set of vectors in R^2 : $\{(a^2, 3), (-1, a - 2), (a, a), (-a^3 - 2a + 2, 22), (a/2, -1/a)\}$.

$$\det \begin{pmatrix} \lambda^2 - 5 & 1 & 0 \\ 2 & -2 & 3 \\ 2 & 3 - 3 \end{pmatrix} = -3\lambda^2 + 27$$

This becomes zero only when $\lambda = 3, -3$, therefore The set is a basis for \mathbb{R}^3 for all $\lambda = x \cdot (ept) = 3, -3$.

In the second case: S vectors in R2 are ALWAYS Linearly dependent, thus they would never form a basis.

3. (5 points) Find the rank of the matrix

$$\left[\begin{array}{ccccc}
1 & 2 & 1 & 3 & 1 \\
2 & 1 & -2 & 0 & 1 \\
2 & 2 & 0 & 0 & 1
\end{array}\right]$$

and determine the dimension of its nullspace. Give details!

Reduced row echelon form is
$$\begin{bmatrix} 1 & 0 & 0 & -6 & -\frac{1}{2} \\ 0 & 1 & 0 & 6 & 1 \\ 0 & 0 & 1 & -3 & -\frac{1}{2} \end{bmatrix}$$

Thus rank $(A) = 3$

Since rank $(A) + d$ imansion $(\text{nullspace}(A)) = 5$
 $= \int d$ imansion of nullspace $(A) = 2$.

- 4. (4 points) Decide whether the following statements are true or false (give a short justification if you want full points!):
 - (a) Let A be an $m \times n$ matrix. The set of vectors x such that $Ax \neq 0$ is a subspace of R^n .
 - (b) Every linearly independent set of vectors in \mathbb{R}^{17} contains seventeen vectors.
 - (c) The nullspace of matrix A is spanned by the columns of A.
 - (d) If A is an 8×8 singular matrix, then rank(A) < 8.