Erik Carlsson
Email: ecarlsson at math dot ucdavis dot edu
Office: MSB 2101.
Phone: 530-754-0274.
I am a Professor in the Mathematics department at
the University of California, Davis.
I received a Ph.D. from Princeton University
under Professor Andrei Okounkov in 2008,
and a B.S. in Mathematics with honors with a minor in Computer Science
from Stanford University, 2003.
I study representation theory,
algebraic geometry, algebraic combinatorics,
computational topology, and more recently, connections with
nonconvex optimization.
Currently, I am interested in connections between
Goresky-Kottwitz-Macpherson (GKM)
spaces, and applications to Macdonald theory and combinatorics.
One of these potential applications has to do with the
unramified affine
Springer fiber
in type A, and a
conjecture
due to Bergeron, Garsia, Haiman, Tesler
involving the signed Schur positivity of the nabla operator,
which is diagonal in the basis of modified Macdonald polynomials.
I am also interested in computational topology, especially persistent
homology, which is joint with
J. Carlsson.
One of our recent developments is a method for constructing the alpha complex in high dimension
using the powerful duality principle in mathematical optimization,
located here.
Publications and preprints in representation theory, algebraic geometry, and combinatorics
A combinatorial formula for the nabla operator.
With A. Mellit. Submitted, 2020. We derive a formula for the matrix elements of the nabla operator,
in terms of dimensions of cells of the unramified affine Springer fiber, with automorphism
factors for the dot and star action. We show directly that the candidate formula satisfies triangularity
in the dominance order, and the other axioms
of the nabla operator. As a corollary we give a new proof of the shuffle conjecture, as well as a formula of Elias-Hogancamp,
proved by Gorsky-Hogancamp.
Affine Schubert calculus and double coinvariants.
With A. Oblomkov. Submitted, 2019. We show that the Garsia-Stanton descent order on the "y" variables
filters the double coinvariant algebra according to the Haglund-Loehr formula for
the Hilbert series.
We explicitly describe the subquotient modules, using connections with the regular
nilpotent Hessenberg variety. This gives a refinement of the "t" grading, which has
many cohomological interpretations.
The Aq,t-algebra and parabolic flag Hilbert schemes.
With E. Gorsky and A. Mellit.
Math. Ann. DOI: 10.1007/s00208-019-01898-1. We construct an action of the
Aq_t algebra on a parabolic flag version of the Hilbert scheme, and use it to
define a new family of Macdonald polynomials.
A proof of the shuffle conjecture.
With A. Mellit. J.Amer. Math. Soc.31(2018), no. 3, 661-697. MR 3787405. We prove a long-standing
open problem known as the "compositional shuffle conjecture" of
Haglund, Morse, and Zabrocki, generalizing the earlier "shuffle conjecture" of
Haglund, Haiman, Loehr, Remmel, Ulyanov, which predicts the Frobenius character of
the double (diagonal) coinvariant algebra. We introduce the Aq,t-algebra.
AGT and the Segal-Sugawara construction.
I use the Segal-Sugarawa construction to recover the AGT correspondence
in the Calabi-Yau case, in which the Liouville vertex operators have a discrete spectrum.
A Littlewood-Richardson rule for the Macdonald inner product and bimodules over wreath products
With Tony Licata. Journal of Algebra 454 (2013): 520-537.
Five dimensional gauge theories and vertex operators.
With Andrei Okounkov and Nikita Nekrasov. 2013.
Mosc. Math. J., 2014. Volume 14, Number 1. Pages 39-61.
Localization and a generalization of
Macdonald's inner product.
Preprint. 2013. I show how to derive the constant term identity in type A
using usual Grassmannian varieties over the complex numbers.
Hall-Littlewood polynomials and vector bundles on the Hilbert scheme
Advances in Mathematics
Volume 278, 25 June 2015, Pages 56-66
A projection formula for the ind-Grassmannian.
Preprint. 2013. I show how to derive the Weyl-Kac character formula
using the infinite-dimensional Grassmannian variety, and some intricate
arguments about switching limits.
Vertex operators, Grassmannians, and Hilbert schemes.
Commun. Math. Phys. 300, 599-613 (2010). https://doi.org/10.1007/s00220-010-1123-7.
I explain how to derive the vertex operators that appear in Nakajima and also Grojnowski's
theory using infinite dimensional Grassmannians. The locality relations follow
from geometric means in the fixed point basis.
Vertex operators, and quasimodularity
of Chern numbers on the Hilbert scheme
Advances in Mathematics
Volume 229, Issue 5, 20 March 2012, Pages 2888-2907.
Exts and vertex operators
With Andrei Okounkov.
Duke Math. J. 161(9): 1797-1815 (15 June 2012). DOI: 10.1215/00127094-1593380.
Vertex operators and Moduli spaces of sheaves. Ph.D. thesis. Princeton University, 2008.
Publications and preprints in applied mathematics
Alpha shapes in kernel density estimation
With John Carlsson. Preprint 2024,
arXiv:2303.12213.
We use convex transforms to determine a continuous "alpha shape," associated to a sum of Gaussian kernels. This is used to generate
alpha complexes from point clouds with noise. Here is an
illustration of the proof.
Computing the alpha complex using dual active set methods
.
With J. Carlsson. To appear in Scientific reports.
We compute the alpha complex in high dimensions using an algorithm based on Lagrangian duality.
A new construction for sublevel set persistence.
With John Carlsson. Preprint, 2021. We define a new complex
in the sense of persistent homology for computing sublevel set persistence.
We connect it to data sets, and apply it to statistical mechanics.
We prove that in the case of smooth function in R^d we recover a filtration
on the Delaunay complex, and show that is is robust in the examples, and suitable
for high-dimensions.
Applying topological data analysis to local search problems.
With J. Carlsson and S. Sweitzer. Foundations of Data Science, 2022, 4(4): 563-579.
We give a method for computing the persistent homology of a Markov chain.
We create a simple "Jeu-de-Taquin" game which reproduces the homology
of the configuration space of three distinct ordered points in the plane.
We give a method for studying the persistent homology of data sets using
random walks, and explain potential applications to discrete optimization.
Topology local optima in computer vision.
With J. Carlsson. SN Computer Science volume 3, Article number: 138 (2022).
We use one and two-dimensional relative persistent homology to classify local basins in
the stereo correspondence problem.
The Ring of Algebraic Functions on Persistence Bar Codes.
With Aaron Adcock, Gunnar Carlsson.
Homology, Homotopy and Applications. 18. 10.4310/HHA.2016.v18.n1.a21.
Shadow prices in territory division. With John Carlsson and
Raghuveer Devulapalli.
Netw Spat Econ 16, 893-931 (2016). https://doi.org/10.1007/s11067-015-9303-9.
Equitable partitioning with obstacles.
Technical report. With John Carlsson and Raghuveer Devulapalli, 2012.
Third Prize winner in the Interactive Session Competition at the INFORMS 2012 annual meeting.
An algebraic topological method for feature identification,
with Gunnar Carlsson, and Vin de Silva,
International Journal of Computational Geometry and Applications, 16 (2006), no. 4, pp. 291-314. 2006.
Conference procedings
Balancing workloads for service vehicles over a geographic territory.
with Raghuveer Devulapalli, 2012.
Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Software
Computing spherical alpha shapes using optimal transport, with applications to grid cells
Computing high-dimensional alpha complexes using Lagrangian dual quadratic programming
Alpha shapes in kernel density estimation