Informal algebraic geometry seminar Exercise set 1

Recall that a degree d hypersurface in \mathbb{P}^{n} is defined by the equation $f\left(x_{0}, \ldots, x_{n}\right)=0$ where $\left[x_{0}: \ldots: x_{n}\right]$ are homogeneous coordinates in \mathbb{P}^{n} and f is a homogeneous polynomial of degree d. A quadric is a degree 2 hypersurface. A line in \mathbb{P}^{n} through points $\left[a_{0}: \ldots: a_{n}\right]$ and $\left[b_{0}: \ldots: b_{n}\right]$ is the set of all points of the form

$$
\left[\lambda a_{0}+\mu b_{0}: \ldots: \lambda a_{n}+\mu b_{n}\right], \quad[\lambda: \mu] \in \mathbb{P}^{1}
$$

1. Prove that a line in \mathbb{P}^{n} either intersects a degree d hypersurface $\{f=0\}$ in at most d points or is contained in it.
2. Find the dimension of the space of (a) degree d homogeneous polynomials in x_{0}, x_{1}, x_{2} (b) degree d homogeneous polynomials in $x_{0}, x_{1}, x_{2}, x_{3}$.
3. Use Problem 2 to prove that (a) there is a unique quadric in \mathbb{P}^{2} through 5 points in general position (b) there is a unique quadric in \mathbb{P}^{3} through 9 points in general position.
4. The Segre quadric S in \mathbb{P}^{3} is defined by the equation

$$
\operatorname{det}\left(\begin{array}{ll}
x_{0} & x_{1} \\
x_{2} & x_{3}
\end{array}\right)=x_{0} x_{3}-x_{1} x_{2}=0
$$

(a) Prove that S contains infinitely many lines (b) Find all lines contained in S (c)* Prove that S is isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
5. (a) Prove that any nondegenerate quadric in \mathbb{P}^{n} can be tranformed to $\left\{x_{0}^{2}+\ldots+x_{n}^{2}=0\right\}$ by some linear change of variables (here you need to work over \mathbb{C}) (b) Prove that any nondegenerate quadric in \mathbb{P}^{3} can be tranformed to the Segre quadric by some linear change of variables (c) Use (b) and Problem 4 to conclude that any nondegenerate quadric in \mathbb{P}^{3} contains infinitely many lines:

6. Given 4 lines $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$ in general position in \mathbb{P}^{3}, how many lines intersect them all? We will solve this problem using Schubert calculus in class, but here's a more elementary solution:
(a) Pick 3 points in general position in each of the lines $\ell_{1}, \ell_{2}, \ell_{3}$, this is 9 points in total. By Problem 3 there is a quadric Q which passes through these 9 points. Prove that the lines $\ell_{1}, \ell_{2}, \ell_{3}$ are contained in Q.
(b) Prove that any line intersecting $\ell_{1}, \ell_{2}, \ell_{3}$ is also contained in Q
(c) Find all lines intersecting $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$ by intersecting ℓ_{4} with Q.
7. Assume that n hypersurfaces $\left\{f_{1}=0\right\}, \ldots,\left\{f_{n}=0\right\}$ defined by homogeneous polynomials of degrees d_{1}, \ldots, d_{n} in x_{0}, \ldots, x_{n} intersect transversally in \mathbb{P}^{n}. How many points of intersection are there?
8. Let X be a degree d hypersurface in \mathbb{P}^{n}, and let $\alpha \in H^{2}(X)$ be the class of a hyperplane section. Compute α^{n-1}.
9. Prove that the set of all lines in \mathbb{P}^{n} is naturally isomorphic to the Grassmannian $\operatorname{Gr}(2, n+1)$.
10. (a) Find the number of k-tuples of linearly independent vectors in n-dimensional space over a finite field with q elements.
(b) Find the number of invertible $k \times k$ matrices over a finite field with q elements.
(c) Find the number of points in the Grassmannian $\operatorname{Gr}(k, n)$ over a finite field with q elements.

