Informal algebraic geometry seminar Exercise set 2

Schubert calculus

1. (a) Use Giambelli's formula to express Schubert cycle $\sigma_{3,2}$ in terms of σ_{i}.
(b) Use (a) and Pieri rule to compute $\sigma_{3,2} \cdot \sigma_{3,2}$.
2. We know from Giambelli's formula that classes $\sigma_{1}, \ldots, \sigma_{n-k}$ generate the cohomology ring of the Grassmannian $G(k, n)$. What are the relations in this ring?
(a) Use Giambelli's formula to express $\sigma_{1^{s}}=\sigma_{1, \ldots, 1}$ in terms of σ_{i}
(b) Write the relations in σ_{i} expressing the fact that $\sigma_{1^{s}}=0$ for $s=k+1, \ldots . n$
(c) In the case of $G(2,4)$, we have two generators σ_{1} and σ_{2}, and two relations in (b):

$$
\sigma_{1,1,1}=\sigma_{1,1,1,1}=0
$$

Use Giambelli's formula to write these relations explicitly, and verify that they define a 6-dimensional algebra

$$
H(2,4)=\mathbb{Q}\left[\sigma_{1}, \sigma_{2}\right] /\left(\sigma_{1,1,1}, \sigma_{1,1,1,1}\right), \operatorname{dim} H(2,4)=6 .
$$

(d) Conclude that $H(2,4)=H^{*}(G r(2,4))$ and all other relations follow from these two. (e)* Consider the algebra

$$
H(k, n)=\mathbb{Q}\left[\sigma_{1}, \ldots, \sigma_{n-k}\right] /\left(\sigma_{1^{k+1}}, \ldots \sigma_{1^{n}}\right) .
$$

Prove that $\operatorname{dim} H(k, n)=\binom{n}{k}$ and conclude that $H(k, n)=H^{*}(G r(k, n))$ for all k and n.
Plücker embedding
Recall that the Grassmannian $G(k, n)$ can be defined as the space of $k \times n$ matrices of rank k, modulo multiplication by a nondegenerate $k \times k$ matrix on the left.
3. For all k-element subsets $I \subset\{1, \ldots, n\}$ and a $k \times n$ matrix M define $\Delta_{I}(M)$ to be the minor of M in columns labeled by I.
(a) Prove that multiplication of M by a nondegenerate $k \times k$ matrix on the left multiplies all minors $\Delta_{I}(M)$ by the same number.
(b) Conclude that we have a map from $G(k, n)$ to the projective space of dimension $\binom{n}{k}-1$ which sends a matrix M to a point with homogeneous coordinates $\Delta_{I}(M)$. It is callled the Plücker embedding, and Δ_{I} are called Plücker coordinates.
(c) Prove that the open chart $\left\{M: \Delta_{I}(M) \neq 0\right\}$ in $G(k, n)$ is isomorphic to the affine space of dimension $k(n-k)$.
4. In case of $G(2,4)$ we have 6 Plücker coordinates which define a map $G(2,4) \rightarrow \mathbb{P}^{5}$.
(a) Prove that they satisfy quadratic relation

$$
\Delta_{1,2} \Delta_{3,4}-\Delta_{1,3} \Delta_{2,4}+\Delta_{1,4} \Delta_{2,3}=0
$$

(b) Conclude that $G(2,4)$ is isomorphic to a quadric in \mathbb{P}^{5} via Plücker embedding.
(c) Write down explicit coordinates in charts $\left\{\Delta_{I} \neq 0\right\}$ in this case.
5. In case of $G(2,5)$ we have 10 Plücker coordinates which define a map $G(2,5) \rightarrow \mathbb{P}^{9}$. (a) Use previous problem to prove that $G(2,5)$ can be presented as the intersection of 5 quadrics in \mathbb{P}^{9}.
(b)* Observe that the dimension of $G(2,5)$ equals $2 \times 3=6$, and hence $G(2,5)$ is not a complete intersection in \mathbb{P}^{9}, that is, the number of defining equations does not match its codimension.

