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Db(P"), the derived category of coherent sheaves on the projective space P", 
was described in the papers of A.A. Beilinson [-2] and I.N. Bernstein, I.M. 
Gelfand, S.I. Gelfand [5]. In the paper [2], two families of sheaves on P" were 
distinguished: C ( -  i) and f21(i), i = 0, 1 . . . . .  n. Sheaves from each of these families 
have no higher Ext's between each other and are "free generators" of the catego- 
ry Db(P"). That means, that Db(P ") is equivalent (as a triangulated category) 
to the homotopy category of finite complexes of sheaves, consisting of finite 
direct sums of (9(-i) (resp. g2i(i)), i=0 ,  1 . . . . .  n. 

In the present paper we describe, in a similar way, some more triangulated 
categories. More precisely, the description proceeds as follows. If 9.1 is a pre- 
additive category, then one can form a triangulated category Tr(9~), which is 
"generated freely" by 9.L Its objects are finite complexes, consisting of finite 
formal direct sums of objects of 9.1, and morphisms are homotopy classes of 
morphisms of complexes. The description of a given triangulated category 
in the form Tr(~I) is practical enough, especially when the functor ~ ~ Tr (9) 
is given explicitly. We represent in the form Tr (9.I) the derived categories of 
coherent sheaves on flag varieties and quadrics, and also the derived categories 
of finite-dimensional representations of parabolic subgroups in GL(n, IE). 

In the w 1 we fix the notations and recall the formulation of some facts 
from representation theory and homological algebra, which are necessary for 
the sequel. Of importance to us is the notion of a convolution, or of a total 
object of a finite complex over a triangulated category. This notion is needed 
to make some sense to the words "resolution in the derived category" Such 
a convolution is not canonical. Moreover, it even not always exists, the obstruc- 
tions to its existence being the higher Massey compositions (or Toda brackets) 
of consecutive differentials in the complex. In the context of topological spaces 
or spectra such questions were treated in [23, 24]. 

In the w 2 we give a general construction of"dua l  families" (such as {12~(i)}~'=o 
for {(9 (-0}7= o), and resolutions of the diagonal. There is also defined a triangu- 
lated category Tr(9.I) for a differential graded (DG-) category 9.I and, under 
certain assumptions, a "duality theorem" is proved: Tr(~)  ~ is equivalent to 
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Tr (~[), where ~I is the "cobar-category" for 9.I. The consideration of DG-modets 
for Ext-algebras (and categories) is a natural generalisation of the Priddy duality 
[18] between algebras with quadratic relations. This circumstance was indicated 
to the author by B.L. Feigin and V.V. Schechtman, to whom the author is 
sincerely grateful. The w 2 was also influenced by recent papers of J.-M. Drezet 
[7] and A.L. Gorodentsev, A.N. Rudakov [8], in which, for each n, a series 
of pre-additive categories 9.I was constructed with the property Tr (9.I),-, D b(P"). 

In w 3, the case of flag varieties is treated. In the particular case of Grassmann 
varieties (as well as for quadrics below, in 3 4) the corresponding pre-additive 
category will be a Koszul (in the sense of Priddy [18]) category with quadratic 
relations. It is not the case for general flag varieties. 

In 34, we consider smooth projective quadrics. Our approach is based on 
the use of the graded Clifford algebra A, which is Priddy dual to the function 
algebra on the quadratic cone. Besides, we consider flag varieties F(1, n -  1, •"), 
which are incidence quadrics. We give for them another representation of the 
derived category of coherent sheaves in the form Tr (~I), where the category 
9[ is Koszul. An approach very close to the ours was developed in the paper 
of R.G. Swan [19]. Author's result, announced in [12], was obtained indepen- 
dently. 

Finally, in w 5, the construction of w 3 is applied to the category of finite- 
dimensional representations of parabolic subgroups in GL(n, ~). To do this, 
we consider the homogenous vector bundle on the flag variety, corrresponding 
to such a representation. 

Acknowledgement. I am glad to thank A.I. Bondal, who suggested several improvements to the 
exposition. 

w 1. Preliminaries 

I.I. For general facts about triangulated categories, see [10, 21]. The bounded 
derived category of an abelian category 9.1 will be denoted Db(9.1). The i times 
iterated translation functor in a triangulated category will be denoted E --, E [i]. 
On complexes (always supposed to be cohomological) this functor is defined 
by the formula (C'[i])i=C ~+j. If E, F are objects of a triangulated category 
�9 , then Ext,(E, F) means Home(E, F[i]). If ~ is an additive category, then 
Hot  (9.I) is the homotopy category of bounded complexes over 9.1. If X is a 
scheme, then the category of coherent sheaves on X is denoted Sh (X). The 
category Db(Sh(X)) is denoted simply Db(X). We denote identically algebraic 
vector bundles and locally free sheaves of their sections. 

The category of covariant functors between categories ~ and ~ will be denot- 
ed Fun(I$, ~), and of contravariant functors-Fun~ ~). 

1.2. Let �9 be a triangulated category and C" - a bounded complex over ~, 
which we can suppose to be situated in degrees from 0 to n: 

C ' =  {C o do d - - '  , . . .  , C"}. 
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A (right) Postnikov system, attached to C ' ,  is, by definition, any diagram 

/C~ [-/nol f 1 [ -  n + 1 ] i ~ /  "'" C ' -  2 [ -  2] ~ / 2 ~ "  C"-1 [-1~/~id "~C" 

J - I  - 2  - 1  

B ~ BI~ B2~ ...~ B"-t~ C " [ - 1 ]  

in which all triangles are distinguished and Jo ~ io = d ~ The morphisms Jo have 
the degree + 1. An object T~Ob ~ is called a (right) convolution of C', if there 
exists a right Postnikov system, attached to C" such that T = B  ~ The class 
of all convolutions of C" will be denoted Tot (C'). Clearly the notions of Postnik- 
ov systems and convolutions are stable under exact functors of triangulated 
categories. 

1.3. R e m a r k s  a n d  c o n v e n t i o n s ,  a) One could also define a left Postnikov system, 
attached to C" as a diagram 

C 0 C 1 C 2 . . .  C n -  1 C n 

C O ~ D 1 ~ D 2 ~ . . .  ( D n -  1 t D n 

in which d o = J o  ~ io, the triangles are distinguished and the horizontal morphisms 
have the degree + 1. Then one could define a left convolution of C" as an 
object T such that T = D n [ - n ]  for some left Postnikov system, attached to 
C'. However, it can be seen using the octohedron axiom, that the class of right 
convolutions of C" coincides with the class of left ones. We do not enter into 
details here, since this will not be used in the present paper. Henceforth all 
Postnikov systems considered will be right. 

b) The class Tot (C') can contain many non-isomorphic elements and can 
be empty. The condition for its non-emptiness is the vanishing of all Massey 
products (called also Toda brackets) of every sequence of consecutive differentials 
in the complex. If one uses the definition of Toda brackets from [23, 24] (which 
can be trivially adapted to the case of arbitrary triangulated categories), then 
this fact becomes tautological. In the category Hot (92) this definition of Toda 
brackets coincides with the other possible one, which uses the fact that Hot (92) 
is the cohomology category of the evident differential graded category. A com- 
plex over a triangulated category with all the Massey products vanishing will 
be called true. 

c) We shall refer to the terms of a Postnikov system, situated in the lower 
row, as its B-terms. 

1.4. Simple examples of Postnikov systems in the derived category are provided 
by filtered complexes; then C i are the filtration quotients and B i are the terms 
of the filtration. The Postnikov system, corresponding to the stupid filtration 
C~i of a complex, will be referred to as its stupid Postnikov system. 

Some filtered complexes give rise to Postnikov systems already in the homo- 
topy category. These are so-called twisted complexes [25]. A (bounded) twisted 
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complex over an additive category 9 / i s  a bigraded object C",  endowed with 
endomorphisms di, i>  0, of degree (i, 1 -  i) such that (~  d~)2= 0. We have d 2 = 0, 
do dl = - d l  do, i.e. d 1 defines morphisms of complexes (C i'', do)~(C i+1'', do). 
Since -d~=d2do+dod2, the morphism d 2 is homotopic to zero. Hence, {... 
~(C i'', do)~(C i+1"', do)---> ...} is a complex over Hot  (9/). It is true, and admits 
a Postnikov system. To see this, we consider the complex C', obtained from 
C'" by convolution of the grading and equipped with the differential d = ~ dl 
It has a filtration "by  the second grading degree", which yields a Postnikov 
system (in Hot  (9.i)). This system realises C" as a convolution of the said complex 
over Hot  (9/). 

1.5. Let # be a cohomological functor from a triangulated category ~ to an 
abelian category 9.I. Set ~P(E)=~(E[p]) for E~Ob(~)  and p~TZ,. Let C" be a 
bounded true complex over E, and TETot (C'). Then there is a spectral sequence 
E~ q= ~q(CP)=~ ~v§ It is constructed starting from a given Postnikov system, 
realising T as a convolution of C'. We delete from this system the term B ~ 
(in the setting if n.l.1; we assume that C" is situated in degrees from 0 to n 
for some n). Then we apply to the diagram thus obtained the functor ~'. Since 
q~ is a cohomological functor, we get a bigraded exact couple, which yields 
the desired spectral sequence. The details are left to the reader, since they are 
entirely analogous to the case of usual spectral sequence of a filtered complex. 

1.6. Lemma. Let K', L" be bounded complexes over an abelian category 9/. Suppose 
that Ext~(K i, IJ)=O for p > 0  and all i, j. Then 

Homob(~) (K', E) = Homno t (~)(K', E). 

Proof. This can be seen using devissage and the fact that the functor Horn 
in a triangulated category is cohomological with respect to each argument. 

1.7. We shall always, except the beginning of w work over the field IE of 
complex numbers. In fact, one can replace everywhere r by any field of zero 
characteristics. The sole reason why we do not do this is that r being a proper 
name, has a meaning which is less prone to be forgotten in a long discource. 

1.8. Let W be an m-dimensional vector space and g=(atl . . . . .  atm) be a non- 
increasing sequence of integers. We shall denote Z ~ W the space of the irreducible 
representation of the group GL(W) with the highest weight at. We shall apply 
the operation Z ~ as well to vector bundles. There are isomorphisms of GL(14/)" 
modules: 

( ~ '  . . . . . . .  W)* = Z . . . . . . . . .  (W*) = Z - ~  . . . . . .  - ~' (W) 

(see [22]). If a is positive, i.e. all at,>0, then 2; ~ can be extend to a covariant 
polynomial functor from the category of vector spaces to itself [15]. In ibis 
case at can be thought of as a Young diagram with at, as lengths of rows. We 
shall denote a* the dual Young diagram and [at the sum 2~a~. If V and iV 
are finite-dimensional vector spaces, then the Cauchy formula ([15], Chap. t, 
w says that Ai(V| W) is isomorphic, as GL(V) • GL(W)-module, to the su ~-n 

G z v@ 
I~1 = i  
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1.9. Let 7, fl be two Young diagrams. The Littlewood-Richardson rule [15] 
for the decomposition of , ~ |  2; a into irreducible factors, prescribes to label 
each cell of fl with the number of the corresponding row. After that, all cells 
of/3 must be added to ~ in such way, as to satisfy the following conditions: 

1) for each i, the union of ~ and all cells with labels less or equal to i, 
forms a Young diagram; 

2) no two cells with equal labels lie in the same column; 
3) order the added (i.e. the labelled) cells from the right to the left and 

from the upper side down. Then, in each initial interval of this sequence, one 
must have the inequalities: (the number of cells with the label 1)>(the number 
of cells with the label 2)> ... .  

The multiplicity of ~ in 2~'@S a equals the number of admissible ways 
of adding cells of fl to ~, which have the type y and differ by positions of 
labels. There is also a dual form of this rule, where the cells are labelled according 
to the number of the corresponding column, rather than row. 

It follows from these rules that the number of all rows (resp. columns) in 
each diagram y such that S r c S" | Sa can not exceed the sum of such numbers 
for ~ and ft. 

1.10. Let G be a reductive algebraic group, B c G - a  Borel subgroup, P ~ B - a  
parabolic one. The vector bundle over G/P, corresponding to a finite-dimension- 
al algebraic representation V of the subgroup P, will be denoted V. When V 
is one-dimensional, i.e. is given by a character Z: P ~ 112" we shall also use 
the notation (9(;~) for V. If V is an irreducible representation, then it can be 
factorized through the Levi subgroup K cP:  P ~ K  ~GL(V). The lattices of 
integral weights of G and K can be identified, so V determines a dominant 
weight Z: T ~  ~*, where T c  B is the maximal torus. By the Borel-Weil theorem 
[13], denoting p: G/B ~ G/P the natural projection, one has: 

R~ R'p.(9(z)=O, i>0 ;  H'(G/P,~')=H'(G/B,(9(Z) ), i>O. 

w 2. A general construction of dual families and resolutions of diagonal 

2.1. Recall that a pre-additive category is a category, in which Hom-sets are 
endowed with abelian group structure such that the composition is biadditive. 
A differential graded (DG-) category is a pre-additive category 9.I, in which 
abelian groups Hom~(E, F) are equipped with Z-grading and differential d of 
degree + 1, d 2 =0, such that for the differential of the composition one has 
the usual graded Leibnitz formula, and also deg(id~)=0, d(ide)=0. We denote 
//(9.I) the cohomology category of ~ :ObH(92)=Ob92;  Homn~)(E,F ) 
=H'(Hom,(E,  F)). An important example of a DG-category is provided by 
the category Cb(92) of bounded complexes over an additive category 92 (the 
naorphisms are not supposed to commute with differentials). The corresponding 
cohomology category is Hot (92). 

2.2. Let 9.I be a DG-category, 9.I e- the DG-category, obtained from 92 by adjoin- 
ing formal finite direct sums of objects. Define a new DG-category, Pre-Tr (92), 
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whose objects are systems {(Ei)i~z, qij: E ~  E~}, where Ei~Ob(92~), almost all 
E~ are zero; q~j are morphisms in 92" of degree i - j +  1, satisfying the condition 
dqij+~(qkjq~k)=O for all i,j. Suppose given two objects of Pre-Tr(92), C 

k 

= {El, qij} and C '=  {E' i, q~}. The complex Homp~,_x~t~)(C, C') has, by definition, 
the components Homk=  (~) t ' Hom~o(E~, E)). If f ~ H o m ~ . ( E  i, Ej), then its dif- 

l + j - i = k  

ferential in Pre-Tr (92) is defined by the formula 

d f  = d ~ . ( f ) +  ~" (q.i,. f +( - -  1) i- ' '+ l f q~i), 
m 

where d ~  is the differential in Hom-groups of 92~. 
Define Tr (92) to be the category of 0-th cohomology of the DG-category 

Pre-Tr (92). It has a natural structure of a triangulated category. In fact, Tr (gA) 
is a full triangulated subcategory in the homotopy category of contravariant 
DG-functors 92 ~ {complexes of abelian groups}. To define this embedding, de- 
note by hg for E~Ob  92 the corresponding representable functor: F ~ Horn (F, E) 
and h-g the functor with values in the category of graded abelian groups, obtained 
from hE by forgetting the differential. An object {E i, Cij} ~ Ob Tr (92) can be iden- 
tified with the DG-functor, sending F e O b 9 2  to the graded abelian group 

h-E, (F)[i], equipped with the differential d + Q, where Q = IJ qiil], d is the differen- 
tial in ~ hE,(F ) [i]. 

If 92' is another DG-category and F: 92--.92' is a DG-functor, then one 
has a DG-functor Pre-Tr(F): Pre-Tr(92)~Pre-Tr(92') and an exact functor 
Tr (F): Tr (92) ~ Tr (9.1'). If 92 is a pre-additive category with trivial DG-structure, 
then Tr (A)= Hot  (92~). The following proposition goes back at least to [2]. 

2.3. Proposition. Let 92 be a full subcategory in an abelian category ~3 such 
that for all E, F~ Ob 92 and i > 0 one has Ext,(E, F ) =  0. Then the inclusion 9~ c 
extends to an embedding of Tr (92)= Hot  (92~) as a full subcategory into D~(~). 

2.4. Let �9 be a triangulated category. We shall denote ~gr the graded category, 
made from ~ by the rule: Ob ~gr = Ob ~, Hom~,r(E, F) = O Ext,(E, F). If 9.1c ~gr 
is a full subcategory, then we shall denote <92>~ the smallest full triangulated 
subcategory in (~, containing 9.1. It is not clear, to what extend (92>~ is defined 
by 92 itself with its structure of a " category with Massey products"  In particular, 
it is not clear, whether one can replace in Proposition 2.3. Db(~B) by an arbitrary 
triangulated category. 

2.5. Henceforth all DG-categories are supposed to be ~-linear. Vect denotes 
the category of finite-dimensional vector spaces over C. 

Call a DG-category 92 ordered, if Ob 92 is a set, endowed with a partial 
order _ < such that Hom (E, F) = 0 unless E < F and Ho m (E, E) = ~ (in the degree 
0) for all E, F~Ob92.  Call a DG-category 92 finite, if Ob92 is a finite set, and 
all Hom~(E, F) are bounded complexes of finite-dimensional vector spaces. 

2.6. Proposition. Let 92, 92' be finite ordered DG-categories, f :  92 ~ 92' - a DG- 
functor such that H ( f )  is an isomorphism of categories. Then Tr(f):TrP2[) 

Tr(92') is an equivalence. 
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Proof First show that for all C1, C2eOb Tr(92) the morphism 

(Trf) . :  HOmT, t~)(C1, C2) ~ HOmTrt~,)((Trf)(C1), (Trf)(C2)) 

is an isomorphism. By our assumption, it is true when C1 and C2 have the 
form E[i], EeOb92. It follows from the orderedness and finiteness of 92, that 
every object of Tr(92) can be constructed, starting from the simplest objects 
E[i], EeOb92, by applying successively the operation of taking mapping cone. 
Hence, the devissage yields the isomorphicity of (Trf ) .  and Im T r f  is a full 
triangulated subcategory in Tr(92'). Again using the devissage, we find that 
this subcategory is in fact equivalent to whole Tr (92'). 

2.7. Let 92 be a finite ordered DG-category. Define a new DG-category, ~, 
whose objects are symbols/~ for EeOb92. Denote the complexes Hom.(E, F) 
simply [E, F]. Set Hortrga(/~, F )=0  unless E<F, Hom~(/~,/~)=tE, and for E < F  
(i.e. E ~ F  and E+F) define Hom~(/~, F") to be equal to the total complex of 
the double complex 

[ E , F ] * ~  ( ~  [E,G]*| 
E < G < F  

-+ ~ [E, G,]* | [G,, G23* | [G2, F]* -,  ... (2.1) 
E < G I < G 2 < F  

which is a kind of bar-construction [16]. The horizontal grading of this double 
complex assigns to [E, F]* the degree 1, to the next sum - the degree 2, etc. 
We omit the obvious formulae for differentials in (2.1), as well as in the similar 
complexes below. 

ffI is also a finite ordered DG-category; there is a natural DG-functor 
i: ~l ~ 9.I, sending each /~ to E, which is a quasi-isomorphism (on Hom-com- 
plexes). 

2.8. Remarks. 1) Since Hom~(/~, P) is the total complex of a natural double 
complex, the spaces H i Hom~(/~,/r have an additional grading. 

2) If 92 is an ordered category with trivial DG-structure, and the poset 
Ob92 is ranked with rank function r, then one can introduce a grading into 
Mor (92), ascribing to Hom (E, F) the degree r(E)-r(F). 

3) Suppose, in the setting of 2.7, that the differentials in 92 are trivial. Then, 
with respect to the bigrading of Remark 1. 

__ i H i,. Hom~(/~, r a) - EXtFu, t~. vect)(CE, tEF), 

where tEE is the functor, sending E to tE, all other objects-to 0 (see also n.2 
below). If one has only H i' i non-vanishing, i.e. Ext i has, with respect to the 
additional grading degree i, then we shall, following [18, 24], call the category 
~I Koszul. The proof of Theorem 1.2 from [14] applies as well to this case 
and yields that Mor(92) is generated by morphisms of degree 1, and relations 
between such morphisms follow from quadratic relations. Examples of such 
categories are provided by full subcategories in Sh (P~), whose sets of objects 
are "triads" of Drezet [7] or "bases of helices" of Gorodentsev and Rudakow 
[8]. Other examples see in w 3, 4 below. 
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4) Let R(9~) be the square matrix, indexed by the set Obg.1 with matrix 
elements R(9.I)E ' e=z(Hom~(E, F)) (Euler characteristic). It is an upper-triangu- 
lar (with respect to the given ordering) matrix with units on the diagonal. One 
has the relation R(ffI)= R(~) -1 ,  since on the level of Euler characteristics the 
complex (2.1) gives the geometric progression: (1 + N)-1 = 1 - -N  + N2--  .... Here 
N = R(9.1)-- I. 

2.9. Let 9~ be a finite ordered DG-category, ~~ opposite category; we shall 
think of objects of 9.1 ~ as symbols E* for E~Obg.L For E=Obg. I  consider 
the object ~(E~ of the category Pre-Tr (9.1~ defined by the complex 

�9 . . - - '  �9 [E, 
E<E1 <E2 E<E1 

- 2  --1 0 

which is also a kind of bar-construction. The notation of the type [E, El] | E* 
means that we have chosen bases in all [E, F] and consider the corresponding 
direct sums of objects. 

2.10. Proposition. The correspondence E ~ c~(~) extends to a DG-functor ~: Pre- 
Tr (ffI) ~ Pre-Tr (9.I~ Its cohomology functor H (~b): Tr (~) ~ Tr (9.1 ~ is an equi- 
valence of triangulated categories. 

Proof First, we construct a functor 4>0: ~l--'Pre-Tr(9-I~ sending /~ to 05(/~). 
The desired morphisms of complexes H orrr~(/~, F-')| ~b (/~) ~ ~b (if) will be defined 
from morphisms ~b(E")~ ~b(ff)| Hom~(/~, P)* by partial dualisation. To define 
these, note that the complex ~,b(/V)| P)*, if regarded as vector space, 
consists, like ~b(~, of summands corresponding to chains E<E 1 < .... which 
start from E, but, unlike ~b(E), necessarily pass through F. Also, in the formula 
for the differential in ~b(ff)| (/~,/~)* the summand corresponding to the 
subchain with F omitted, is not included into summation. Define a morphisrn 
~b (E ~) ~ q~ (/~)| Hom~ (/~, iV) * componentwise, sending the summand correspond- 
ing to a chain E<E1 < ... to itself, if the chain passes through F, and to zero, 
otherwise. The functor ~b o is constructed. 

If C =  {/~i, qi~} is an object of Pre-Tr(9~), then applying the functor ~bo to 
each component, we obtain a complex of objects of Pre-Tr (9~). Taking its natural 
convolution, we obtain an object ~b(C). This defines the desired DG-functor 
4). Consider its square 

~b 2 : Pre-Tr (~op) _~ Pre-Tr (ffl) ~ Pre-Tr (9.1~ 

There is a natural transformation 4) 2 ~ Pre-Tr (i), where i: ~op __, ~op is the natu- 
ral quasi-isomorphism. This transformation sends each object ~b(/]*) to E* and 
gives the identity on the cohomology of Hom-complexes. The proposition fol- 
lows from this. 

Henceforth, we shall denote ~b ( ~  simply/~, identifying Tr (ffl) and Tr (9.1~ 

2.11. There is another triangulated category connected with a DG-category ~l. 
namely, the derived category D~(9.1). Let us recall the construction, supposing 
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for simplicity that 92 is finite. First consider the homotopy category of contravar- 
iant DG-functors 92 ~ Vect, which will be denoted Hot b (9.I). Then localise it 
with respect to the family of quasi-isomorphisms, i.e. those natural transforma- 
tions of functors ~b---}r which give a quasi-isomorphism of complexes 
~b(E)--} ~b(E) for every object EeOb(gg). For example, if the DG-structure in 
~l is trivial, then Db(92) is the bounded derived category of the abelian category 
Fun ~ (92, Vect). 

2.12. Proposition. Let P~ObDb(92) have the form (~  hE| where he are 
E e O b  9.1 

the representable functors and C'e are bounded complexes over Vect. Then, for 
any object ~O ~ Ob D b (9.1) the natural morphism HomHotb ~)(P, qJ) --} Homob ~)(P, ~k) 
is an isomorphism. 

Proof It is similar to the case of trivial DG-structure in 9.1 (then the representable 
functors are projective objects in Fun~ Vect)). It suffices to consider only 
the case P--h e . As in the "classical" case, the proposition follows from the 
following lemma, whose proof is left to the reader. 

I.emma. Any morphism from hn to an ( objectwise ) ac yelic DG-functor is homotopie 
to zero. 

We have natural exact functors 

Tr (9.I) " , Hot  b ( 9 2 ) - 7  Db (92), 

where ~t is the functor, spoken of in n.2.1. 

2.13. Proposition. I f  92 is a finite ordered DG-category, then the composite functor 
B~ is an equivalence between Tr (92) and D b (92). 

Proof. It suffices to show that any contravariant DG-functor ~: 92--* C(Vect)  
is quasi-isomorphic to a DG-functor, admitting a Postnikov system over 
Hotb(92) with "factors" of the form @he| To do this, consider the bar- 
resolution of the functor ~9. It is a DG-functor, sending an object EeOb92 
to the total complex of the following double complex 

"---} 0 [E, F1]t~[F,,F2](~b(F2)-~ O [  E,F]~tp(F)" 
E<FI<F2 E < F  

It is easily seen to be quasi-isomorphic to ~. On the other hand, each functor 
E-~ [E, Fl-1 | IF1, F2] |  | ~b (/7,) satisfies the conditions of Proposition 2.12. 
Taking the filtration of the bar-complex by the horizontal degree, we obtain 
the required Postnikov system. 

2.14. Now suppose given a smooth complete algebraic variety M. Suppose that 
a finite ordered pre-additive category 92 (with trivial DG-structure) is given 
as a full subcategory in Db(M) gr and objects of 92 are locally free sheaves. In 
other words, Hom~(E, F)=HomM(E, F), Ext , (E ,  F)=O for i > 0  and all E, F e  
0b9s Then we can consider complexes /~ for EeOb92  as objects of Db(M), 
Understanding * as dualisation. In this situation we have the following orthogon- 
ality relation for hypercohomology. 
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2.15. Proposition. For all E, FEOb 9.I 

{ i  f ~  
I-IV(M, E G P ) =  for p # 0 ,  if E = F  

for p=0 ,  if E = F  
Proof. E G g  is the complex 

. . .-o @ EGF*GEF,  Pl]-~ EGF*.  
F<F1 

Hence, there is a spectral sequence, converging h| R-I'(M, EGP) ,  whose first 
term is the sum of summands [F, F1] G . . .  G [F~_ 1, Fk] G [Fk, El, corresponding 
to chains F < F1 < .... Fk < E. Define in this first term a homotopy, sending each 
such term to zero, if Fk = E, and by identity to the summand corresponding 
to F < F1 < . . .  < Fk < Fk + 1 = E, if Fk # E. This homotopy shows that our spectral 
sequence degenerates in the first term and we obtain the claimed result. 

Example. If M = pn, Ob 9.I = ((9 ( -  i), i = 0, 1 . . . . .  n}, then (9 (/)" is quasi-isomorph- 
ic to ~r2i(/)[-- i]. 

2.16. Consider, in the setup of n.2.14, the following complex B ' =  B~ of sheaves 
o n M x M :  

�9 "-~ 0 E[x-]E*G[E, E1]G[EI'E2]-~ 
E<EI  <E2 

G EC E*G[E,E,] | E| 
E < E1 E ~ O b ~ l  

where [] is the "external" tensor product of sheaves. There is a natural morph- 
ism B ' ~  (9~, where A c M x M is the diagonal. It is, of cource, not always a 
quasi-isomorphism. Nevertheless, this construction covers the resolutions of di- 
agonal, considered in [7, 8, 11, 121. 

For each complex ~ O b D b ( M  x M) denote ~ the functor 

i t  

R p2. (P*(-- ) ~ )  f~): Db( M) ~ Db(M). 

Here pi: M x M ~ M are the projections. 

2.17. Proposition. For all ~ ' e O b  Tr (9.1) c Ob Db(M) the morphism ~ ( ~ ' )  -o ~',  
induced by the morphism B" ~ (g A, is a quasi-isomorphism. 

Proof. It suffices to consider the case ~ ' =  E ~ Ob ~.  We have a spectral sequence, 
converging to the cohomology sheaves of the complex ~B(E), whose first term 
consists of summands of the form E~ G [E~, E2] G. . .  G [-Ek, E] for E < E1 <..- 
< Ek < E. The homotopy, similar to that of 2.15, yields the result. [] 

2.18. Suppose, in addition, that the poset Obg.I is ranked with rank function 
r. Then we can consider the following complex over Db(M x M): 

...---~ ~) Ei~I/~[2]-* ~ EI~I/~[1]~ t~ El~lg 
r ( E )  = r |  - 2 r ( E )  = r| - 1 r (E )  = r| 
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where ro is the maximal value of the function r. This is a true complex. It 
admits a Postnikov system due to the fact that Bh is in this case a twisted 
complex. This Postnikov system realises B~ as a convolution of the said complex. 

w 3. Grassmanians and flag varieties 

3.1. Recall the description of the derived category of coherent sheaves on Grass- 
manians, since this particular case will be needed for consideration of general 
flag varieties. Let V be a n-dimensional vector space, G = G (k, V) - the Grassman- 
ian of k-dimensional subspaces in V. S ~  V - the tautological k-dimensional 
vector bundle over G, S*=(r:/S)*~P* - i t s  orthogonal complement. Then 
H~ S*)= V* H~ ~"/S)= V. The section s6H~ • G, S*~  V/S)= V*| V 
= End (V), corresponding to the unit operator, vanishes exactly along the diago- 
nal A ~ G x G and defines the Koszul resolution 

{... ~ A2(SNISt)--* SN1S * --*Ca• =C" 

of the sheaf (9 4. Its i-th term is the sum @X~S[]Z~*S t, where ~ runs through 
Young diagrams with i cells. This resolution yields the generalised Beilinson 
spectral sequence 

E'~ ~= @ ~(G, ~'|174 ") 
l~l = -p 

where : ' c O b  Db(G) is an arbitrary complex. The following lemma is proved 
(perhaps, not for the first time) in [11]. 

3.2. Lemma. a) Suppose Yl ~72 > ... >Yk~--(n--k). Then the sheaf S, ~ ...... ~k(S*) 
on G(k, V) has no higher cohomology groups. It can have non-trivial H ~ only 
when all ?i>O. In this case H~ ~r ...... ~(S*)) =,?~' ..... r~(V*). 

b) I f  (n--k)>oq>...>=Otk>O and k>fl l>. . .>fl ,_k>O, then, denoting 
=(~q . . . . .  ~tk), fl=(fll, ..., ft,-k), one has 

! for all i, if ~t#fl* 
Hi(G, S :S |  for i~l~l=l/~l, /f ~=~*  

for i=l~l=lHI,  /f ~=/~*. [ ]  

3.3. Denote X(k, n) the set of sheaves ~ S  on G, where a runs over Young 
diagrams with no more than k rows and no more than n - k  columns. It follows 
from the Littlewood-Richardson rule that if ~:S, EPSzX(k, n), then each irre- 
ducible summand 2; ~ S c Horn ( ~  S, 2;# S) satisfies the conditions of n.a) of the 
lemma. Hence sheaves from X(k, n) have no higher Ext's between each other. 
It allows us to construct, following I-3], not merely a spectral sequence, but 
a genuine (two-sided) resolution of arbitrary ~ ' e O b D b ( G )  by means of 
E~SEX(k, n), which is canonical up to homotopy equivalence. Namely, denote 
Pi: G x G -~ G the projections, i = 1, 2. Then ~ "  is a convolution of the following 
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true complex over Db(G) 

{...-. Q RF(G, ~ "|174 
l~l=i 

(3.1) 

This complex comes equipped with a canonical Postnikov system, realising ~ '  
as its convolution. Namely, we start from the stupid Postnikov system of the 
Koszul complex C', which realises (94 as its convolution (in the derived category). 
Then we tensor this system termwise with the object p* ~-" and after that apply 
to the obtained Postnikov system the exact functor Rp2.. We take in (3.1) 
for RF the graded spaces of hypercohomology endowed with zero differentials. 
The i-th term of (3.1) thus understood will be denoted Z i. 

Now we shall pick nice representatives in Hot (Sh (G)) also for the B-terms 
(see 1.3) of our Postnikov system, i.e., for the partial convolutions of (3.1), starting 
from the left. To begin, we consider the differential Z - I ~ Z  ~ It is already 
represented by a genuine morphism of complexes, and we define the complex 
B-  1 to be the cone of this morphism. Since we have done nothing but chosen 
a nice representative for a term of already existing Postnikov system in the 
derived category, we dispose with a morphism Z - 2 ~  B- ~ in Db(G). The terms 
of these complexes are direct sums of Z ~ SeX(k, n) and therefore have no higher 
Ext's between each other. Hence, by Lemma 1.6, the morphism Z - 2 ~ B  -~ 
can be represented by a genuine homotopy class of morphisms, and we define 
a complex B -2 to be the cone of any morphism from this class. Again, terms 
of B -2 are direct sums of elements of X(k, n) and we dispose with a morphism 
Z-3.__+ B-2 in the derived category. Thus proceeding, we obtain a complex of 
sheaves, quasi-isomorphic to ~ ' ,  whose p-th term equals 

�9 Q ~'(o,~'|174 
i - j = p  lal=j 

While its terms are defined by ,~-" in a canonical way, its differentials are not 
canonically defined by ~ ' ;  only the homotopy equivalence class of the complex 
is canonical. 

These considerations lead to the following description of Db(G). Denote 
9.1(k, V) the full subcategory of Sh(G(k, V)) on the objects from X(k, n). 

3.4. Theorem. Db(G(k, V)) is equivalent to Tr (91(k, V)) as a triangulated category. 

3.5. 91(k, V) is a finite ordered pre-additive category: Hom (S ~ S, ~ S ) = C  and 
Hom(Z~S, ZaS)4=0 only if ~i>fl~ for all i, what will be denoted ~>fl.  Hence 
as noted in n.2.13, Tr(9/(k, V)) coincides with Db(Fun~ V), Vect), and we 
obtain a non-standard t-structure (in the sense of I-4]) on the triangulated catego- 
ry Db(G(k, V)) with the heart Fun~ V), Vect). 

Identifying G(k, V) with G(n-k,  V*), we find that Db(G(k, V)) is equivalent 
to Tr(9.1(n-k, V*). The poset X(k, n) is ranked with rank function I~1. If E 
= Z ~ S~Ob 9/(k, V), then the complex/~, defined as in w is quasi-isomorphic, 
due to 3.2.b), 2.15 and the generalised Beilinson spectral sequence, to the sheaf 
Z~* S t, shifted by I~1 places to the left. The resolution C" is therefore a particular 
case of the complex from 2.18. 
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Denote 9.1g(k, V) the graded category, obtained from 9~(k, V) by assigning 
to Hom (S ~ S, S p S) the degree I~1-1/31, Then the DG-category 9.1~(k, V) ̂ , defined 
according to n.2.7, is quasi-isomorphic to 92(n-k ,  V*). Since all higher Ext's 
between objects of ~ ( n - k ,  V*) also vanish, we obtain by [14] the following 
fact. 

3.6. Corollary. ~z(k,  V) and 9.I~(n-k, V*) are Koszul categories with quadratic 
relations, Priddy dual to each other. [] 

3.7. Let V be a rank n vector bundle over an algebraic variety Y, G = G(k, V) 
- the  relative Grassmanian, re: G ~ Y, Pi: G x G ~  G, i=  1, 2 - the projections, 

r 

A c G x G - the relative diagonal. The previous considerations are easily global- 
u 

ised, giving for each ~,~'~Ob Db(G) a true complex over Db(G): 

. . .--, ( ~  r t * ( R r c , ( ~ ' | 1 7 4  ... 
[~[=i 

equipped with a canonical Postnikov system, realising ~ "  as its convolution. 

3.8. Now we turn to the case of general flag varieties. Suppose given 1 < il < . . .  
<i~<n and let F = F ( i l ,  ..., ik, n) be the variety of flags of type (il . . . . .  ik) in 
an n-dimensional vector space V,, S i l c . . .  c Sikc V -  the tautological flag of bun- 
dles over F. Denote X = X ( i l  . . . . .  i k, n) the set of sheaves S "1Sil |  @2~'kSi~ 
over F, where ~j, j = 1 . . . . .  k -  1, runs over Young diagrams with no more than 
ij rows, and no more than i~+l-i~ columns; ~k runs over Young diagrams 
with < ik rOWS and < n-- ik columns. 

3.9. Proposition. Sheaves from the set X (il, . . . ,  ik, n) have no higher Ext 's  between 
each other. 

Proof We have to calculate the cohomology of sheaves 

Hom (Z ~' Si,, Z ~x Si~) |  |  (Z ~ Si~, Z p~ Sik) 

on F, where Young diagrams or j, flj satisfy the above conditions. From the Lit- 
tlewood-Richardson rule we have that every irreducible summand S ~' S~, in 
Hom(2~ ~'Si,, S p' S~,) has components 71.j satisfying the inequalities - i 2 + i x  

~1. j =< i2 - i~, every summand ~ Si~ in Horn (E ~ Si~, Z ~ Si~) satisfies the in- 
k 

equality - i  3 + i2 < ~a, j < i 3 -  i2, etc. It suffices to prove that every sheaf (~)X rj Si~ 
j = l  

on F(i 1 . . . . .  JR, V) such that the components Yi, p (possibly negative) satisfy the 
inequalities 7 ~ , p < i 2 - i l ,  72 ,p~ i3 - i z ,  ..., 7k, p<n-- ik ,  has no higher cohomo- 
logy. We shall prove this by induction on k, considering the (higher) direct 
images of this sheaf in the tower of projections 

F ( i l ,  i 2, . . . ,  ik, 1/)--~ F ( i2 ,  ia, . . . ,  ik, V ) - ~  . . . - - ~ G ( i k ,  V).  

We claim that at each step only the 0-th direct image R ~ can be non-trivial. 
For the first projection (to f ( i 2 ,  . . . ,  i k, V)) this follows from Lemma 3.2a) and 
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R ~ equals to 
2:-rl. ,,, .... - r " '  (S'2) | 2; r2 Si2 |  @ S rk S~ 

(if - V  1, i, ->... -> --V 1.1 --> 0; otherwise, R ~ --0). Decomposing this into irreducible 
summands, we obtain a sum of bundles of the form Zr'2 S~ | Sr~ Si~ @... @,?,~ S~, 
where V~ again satisfies the inequalities V2, p = ( i 3 -  i2). Thus proceeding, we obtain 
the desired result. [ ]  

Denote 9.1 =9.1(il . . . . .  ik, n) the full subcategory in Sh(F(il  . . . . .  ik, V)) on the 
set of objects X (i 1, ..., ik, n). 

3.10. Theorem. Db(F(il . . . . .  ik, V)) is equivalent to Tr(gJ(i 1, ..., ik, V)) as a trian- 
gulated category. 

Proof. From the Proposition 2.3, we have an embedding Tr(9~)~Db(F) as a 
full triangulated subcategory. It is enough to prove, therefore, that each 
~ ' ~ O b D b ( F )  admits a resolution belonging to Tr(gA). We shall consider for 
simplicity the case k = 2. The general case can be considered similarily, by induc- 
tion. Denote p: F(il, i2, V ) ~  G--G(i2,  V) the projection. For  each al the com- 
plex R p . ( .~ ' |  Y-,~ (SiJSi,)*) of sheaves on G has a resolution consisting of direct 
sums of Z'~Si~ here al has < ( i 2 - i l )  columns, ~2 has < ( n - i 2 )  columns). The 
terms of this resolution are sums of summands of the form 

It '(G, R p,(~.~'| S ~ (S,JS,,)*)| Z~*~(S~))| Z ~ S~2 

-~-I~tF ,~'c~ S~'~S. /S. ~*c~ Z~'~tSt. ~ |  2~'~ S. 
- -  ~ , ~ i 12 / 111 ~ \ 1 2 l l  12 " 

We can identify, in the derived category, R p.  ( .~ ' |  Z ~ (SiJS,,)*) with this resolu- 
tion. Now, since F is a relative Grassmanian over G, F=G(i~, S~), if" is a 
convolution of the following true complex over Db(F): 

... ~ @ p*(Rp,(o~'|174 ~ Si, -*.. .  (3.2) 
la, t=i 

which is equipped with a canonical Postnikov system, realising ~ ' a s  a convolu- 
tion. We can substitute here in the place of each Rp,( . . . )  its resolution. Due 
to the vanishing of higher Ext's between elements of X, we can then form 
the convolution of (3.2), using only genuine homotopy classes of morphisms 
of complexes. This yields the desired resolution. []  

The resolution thus obtained has terms, which can be explicitly expressed 
through .~'.  Denote for short a a whole sequence (al . . . . .  ~k) of Young diagrams, 
and set k 

I~xl = ~ I~jl, E,,= (~) Z"~ S,,, ,~,,= | X~;(S,,+,/SO, 
j = l  

where Sik., = E In this notation the p-th term of the resolution has the form 

( ~  (~) ~-Ii(F, ~ " | 1 7 4  (3.3) 
i - j = p  [~tl=j 

One cannot construct an analogous resolution by means of ~ instead of E~, 
since ~ do have higher Ext's between themselves. We shall construct below 
a spectral sequence with the first term I-I'(F, ~ ' | 1 7 4  ~ converging to _/-/'(~')' 
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3.11. Example. A resolution of the structure sheaf of a point on F can be obtained 
as a Koszul resolution. Choose linear subspaces V i~, V "-~k+i~-I . . . . .  V "-i2+q 
in V, dim V j =j ,  which are in general position. Then the subspaces 

Vikf-~ vn-ik+ik-~f-~. . . f-~ vn- i2+il ,  Vikf-~...(-~ Vn-i~+i2 , , , ,  V ik 

form a flag of type (ix, . . . ,  JR), i.e. a point of F. Consider the bundle 

(S* | V/V"- '~ + " ) + ( S  * | V/V"- '3  + '~)+ ... + ( S *  | V/V'~) 

over F and its section a=(ax  . . . . .  ak) , where 

aj E H ~ (F, S~ | V / V " -  i j+, + i j) = H o m  (V, V/V" - ij +, + i 0 

is the natural projection. This section vanishes exactly in the described point 
and generates the Koszul resolution. Due to the Cauchy formula terms of this 
resolutions are direct sums of elements of X. In fact, this resolution is a particular 
case of (3.3). One cannot, however, construct a resolution of the diagonal in 
G x G in this way, since it is impossible to choose a family of subspaces with 
desired properties, which depend analytically on the point x~F.  

3.12. Let us introduce on the set X = X ( q  . . . .  , ik, n) a binary relation ~ ,  setting 
E ~ F  iff there are bundles E x , . . . , E m ~ X  such that Hom(E,  E1) 
~:0 . . . .  , Horn (E,,, E):t: 0. We shall identify X with the set of corresponding k- 
tuples of Young diagrams and write a ~ f l  if E ~ E p  and ~ f l  if flt~a. Set 

k 
also l(a)= ~ (k+ 1 - j )  lajl. The notation y c z |  where y, z, u, are Young dia- 

j = t  

grams, will mean that 2~ y = Z ~ | Z ". Considering the direct images of the sheaf 

Hom (E~, E~) = |  (Z ~J Sij, Z ~j Sij) 

in the projections 

F(ix . . . . .  ik, V)-+F(i2,  . . . ,  ik, V)--+ ...--+G(ik, V), 

we obtain the following criterion for the non-vanishing of Horn (Ep, E,): 

There are Young diagrams x l ,  x2, ... such that xx has < i  x rows, x2j 
and x2j+ x have < = i j r o w s ( j > = l ) a n d x x | 1 7 4 1 7 4  (*) 
X3@f13 ZDX4, X5| 2DX 4 etc. 

It follows from this criterion that -m is a partial ordering. Indeed, we must 
only verify the property (a-mr and f l - ~ = ~ = f l ) .  To do this, we prove that 
if ~.~ fl (i.e. ~<~ fl and ~t 4: fl), then l(~t) < l(fl). We can assume that Horn (E~, E,) 4: 0. 
Let x x be the Young diagrams, given by (*). Then 

~1_-</~1, I x l t = l / / l l - I ~ l l ,  Ix21=l/~21+l/~xl-I~xl,  x2->-~2 �9 

Hence 1#21+ I/~al => 1~21 + I~al. Thus continuing, we obtain for each v the inequali- 

ty ~ Ifl~l > ~ I%1. Summing them up, we obtain that l(fl)>l(o O. If fl4:a, then 
/=X j = l  

at least one of these inequalities in strict, hence/(f l)> l(a). 
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So, <A is a partial ordering and 1 is a monotonous function. Also, it is 
clear that Hom (E,, E , ) =  r  Hence, 92 = 92(il, ..., ik, n) is an ordered in the sense 
of w pre-additive category. The complex B~ from n.2.16 is a resolution of 
the diagonal on F x F. However, this resolution is very cumbersome. The aim 
of the remainder of this section is to construct a smaller "resolution" (3.4) 
and corresponding generalised Beilinson spectral sequences. 

3.13. Proposition. The poser X is ranked with rank function I. 

Proof Let D be the set of k-tuples ct=(~ 1 . . . . .  ak) of Young diagrams such that 
k 

a s has _<_i s rows. For  a~D set E , =  ( ~ Z  ~J Si~ and introduce a relation <~ on 
j = l  

D similarly to n.3.12. The criterion (.), the fact that d i s  a partial order and 
k 

the monotonei ty of the function l(a) = ~. (k + 1 - j ) las[  remain in force. The inclu- 
sion X c D preserves the order, s= 

3.14. Lemma. D is a ranked poser with rank function 1. 

Proof It is enough to show that if ~<~ i is an elementary pair (i.e. there is 
no 7 such that ~<~7<~fl), than l(fl)=l(~)+ 1. This statement is obvious for k= 1. 
Consider next the case k=2 .  Let (~1, ~2)'~(fll, f12) be an elementary pa i r ,  
x l ,x2-Young diagrams such that x l |  (in particular, ~<fl~), 
X 1 |  2DX2~" 0~2 . Then we have ( a l ,  0~2)"~(~1, x2)"~ l ( i l ,  i2) .  Since 
(~1, ~t2)<~(il, i2) is an elementary pair, one of these non-strict inequalities is 
in fact an equality. If at  = i l ,  then the fact that l(i)= l(~)+ 1 is obvious. Hence 
we suppose that ~2 = X2" SO, X 1 | t~ 1 ~ i l ,  X1 |  ~ (~2" In particular, 

I~xl+l~zl=lP~[+[t2l and l(p)-l(~)=13al-I~xl=lxxl. 

Suppose that [x~} > 1. Then x~ has more than one row or more than one column. 
Consider first the possibility that it has more than one row. Write in cells 
of x 1 numbers according to the Littlewood-Richardson rule 1.9: in the cells 
of the first row we write numbers 1, in cells of the second row-number 2 etc. 
The diagram fl~ is obtained from e~ and e2 - from x2 by admissible (i.e. satisfying 
the conditions 1)-3) of n.l.9) adjoining of cells of xl .  Let y denote the diagram 
xl  with its last row deleted, and z-this last row; denote v the number of this 
row. Deleting from ia  all cells with numbers v, we obtain a Young diagram 
71 such that Y|  ~ x  and z |  ~f l l -  Since the tensor multiplication of repre- 
sentations is commutative up to isomorphism, a2 can be obtained from f12 by 
first adjoining the cells of z and that by admissible adjoining the cells of y. 
Denote ~z the intermediate diagram: f12| ~ ,2 |  Then we have 
(al, az)'~(Ta, V2)<a(fl~, f12). This contradiction shows that x~ cannot have more 
than one row. The use of the dual Littlewood-Richardson rule shows that x~ 
cannot have more than one column, and our statement is proved for k = 2. 

For  k > 2  the statement is proved by induction. Suppose that 
(al . . . .  , ak)'~(fll . . . .  , ilk) is an elementary pair. The criterion (*) gives Young 
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diagrams xi . . . . .  Xzk- 2 such that 

X1 (~)0~1 ~ i l l ,  X I ( ~ i 2 Z D X 2  . . . . .  X2k--3(~O~k-- lZDX2k--4 ,  

x2k-3| 

From these relations we have 

(~1 . . . . .  (Zk)*<:~ (~1 . . . . .  ~ k - 1 '  X2k-2)<=l( f l l  . . . .  ' ilk)" 

If the right non-strict inequality is in fact an equality, then the statement is 
obvious. Suppose therefore that ek = X2k-2" This entails the equality 

k k 

2 J jl = l i j l  
j = l  j = l  

Also, we have 

(~1 . . . . .  ~k)<:~l(~l . . . . .  ~ k - 2 '  X 2 k - 4 ,  flk)"5~(fll,  " ' ' ,  elk)" 

Hence, either (~k-1, ~k)<~(X2k-4, ik) is an elementary pair of sequences of length 
2, or (~1 . . . .  , ~k-2, X2k-4)<(f l l  . . . .  , i lk- l )  is an elementary pair of sequences 
of length k -  1. In both cases the statement follows from the induction hypothesis. 
Lemma 3.14 is proved. 

If a < f l  is an elementary pair in D, we shall say that a is obtained from 
fl by modification. Lemma 3.14 tells us that one can take from flj one cell 
in such way that the rest were a Young diagram; then, this cell is to be added 
to flj+l in such way that the result were a Young diagram (in the case j = k  
the taken cell is to be thrown away). We can consider this as a "game",  which 
takes place on k "boards",  the j-th boards has the form of a rectangular semi- 
strip, infinite to the right and having the width ij (the cells are thought of 
as squares 1 • 1). One can play also on finite boards. Suppose given finite rectan- 
gular boards T/, j = 1 . . . . .  k, of integer sizes and let Tj + be the boards of the 
form of rectangular semistrips, obtained from Tj by infinite continuation to 
the right. We shall call a position any arrangement of cells on a given set 
of boards, which on every board forms a Young diagram in its left upper corner. 
Proposition 3.12 is now a consequence of the following lemma. 

3,15. Lemma. Let ~, fl be two positions on a set o f  f inite rectangular boards 
Tj, j = 1 . . . .  , k. I f  ~ can be obtained from fl by means of  a set of  modifications 
on the set o f  extended boards Tj +, then ~ can be obtained from fl by means 
of (possibly) other set of  modifications, which display themselves within the boards 

Proof. Consider the poset of positions as a ca tegory / / .  Modifications are then 
morphisms of this category. We shall say that a modification has type j, if 
a cell is taken from the j- th board. Let m r, m~ be modifications of types j, l 
and the composition ml m r is defined. It is immediate to see that there are modifi- 
cations m'~, m~ of types l , j  such that mlmi=m~m'v Hence each composition of 
modifications equals in M o r / /  to a morphism of the form Mx . . .Mk,  where 
M s is some composition of modifications of type j. Now, if a is obtained from 
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fl by means of such a sequence of modifications (on the set of extended boards 
T~+), then all intermediate positions lie in fact within Tj. The lemma and with 
it the Proposition 3.13, are proved. 

3.16. Since X = O b g ~  is a ranked poset, we can apply the remark of n.2.18, 
obtaining the following true complex over Db(F x F): 

... ~ @ E~ []/~at [i] ~ . . .  (3.4) 
l (at) = i 

and a canonical Postnikov system, realising B~, hence (9 a, as a convolution 
of this complex. Observe, that the complex/~at has only one non-trivial cohomo- 
logy sheaf, in degree -I~1. Indeed, by homogeneity, the sheaves _HJ(/~) are 
locally free. Their fibres (bundle-theoretical) over some point x equal to 
R-F(F,/~|  where P" is any locally free resolution of (9 x. Using the Koszul 
resolution (Example 3.10) and the orthogonality relations 2.15, we obtain the 
claimed fact. 

Below we shall show that _H-latl (/~at) = ~a. Meanwhile denote this cohomology 
sheaf by ~ .  The complex (3.4) can thus be rewritten as 

�9 . . ~  @ Eat[]O'at[i-[e[] ~ .  (3.5) 
l(at) = i 

It generates generalised Beilinson spectral sequences converging to _H'(~') for 
~-EOb Db(F): 

z(~) = - p 

'E~q= O]~-Iq-P+ latl(F, ~ ' |  Eat)| ~'~. 

To obtain, say, the first one, note that the argument with pull-back of ~"  
to F x F, tensoring with (3.5) and then pushdown in the other direction yields 
a true complex over Db(F): 

... ~ @ RF(F, ~ ' | 1 7 4  ... 
/ ( a t ) = /  

and a canonical Postnikov system, realising ~-" as its convolution. The desired 
spectral sequence follows now from n.l.3. 

3.17. Lemma. ~" = ~at. 

Proof It suffices to show that ~at satisfy the orthogonality relations 

{ i  f ~  if~=~fl 
Hi(F,E~| for i*l~l ,  i f ~ = f l  

for i=[~l, if 0~=fl 

(then the statement will follow from the spectral sequence 'E). But these relations 
are easy consequences of Lemma 3.2b). [] 

Let us restate our result in its final form. 
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3.18. Proposition. For each . ~ O b  Db(F) there are natural spectral sequences 

E'~ ~--- (~  ~I'~-)'+)~I(F,,~|174 
l(~t) = p 

'E~q= q) R-Iq-P+ I'l(F, o~ | E,)| q~ 

converging to H_P+~(~). Here ~ runs cover k-tuples ( ~  . . . . .  ~k) of Young diagrams, 

k 

~, = ~) z~,(s,), ~, = | z ' ; ( s , ,  ,IS,,)*. 
j = l  

w 4. The case of quadrics 

4.1. Let E be an N-dimensional vector space (N>3), endowed with a non- 
degenerate symmetric bilinear form ( , ) ,  Q = Q (E) ~ P(E) - the quadric of isotro- 
pic 1-dimensional subspaces in E, B= @H~ (9(0) - the projective coordinate 
algebra of Q. Define the graded Clifford algebra A = A (E)= (DA~(E) to be gener- 
ated by ~ E ,  deg~= l ,  and by a letter h, degh--2, which are subject to the 
relations ~)/+r/~=2(~, q)h, ~h=h~ for all 4, ~/~E. The algebras A and B are 
Koszul quadratic algebras, Priddy dual to each other, i.e. A=Ext~)(ff~,(E), 
B= Ext] ((E, (~). The corresponding generalised Koszul complex 

... ~ A * |  B--) A * Q  B--) A * |  B (4.1) 

coincides with the Tate resolution [20] of B-module (~. The differential in (4.1) 
equals to ~r~, | lx, where ~i~E, xi~E* are dual bases, lx: B - ,  B for x~E* =B1 
sends b to xb, r~: A - ~ A  for ~ E = A 1  sends a to a~. 

If ~ E  is an isotropic vector, then 42=0 in A. If M =  @Mi is a graded 
left A-module, then the sequence of sheaves on Q 

~ ( M )  = {... --) M - I  (-- I) ~ / ~ o  --) )~i (i) ~ . . .}  

is a complex (see also [5]). 
Consider A*= OA* with grading deg A* = - i ,  equipped with the obvious 

structure of left A-module. The complex s is exact, since the corresponding 
(by Serre) complex of graded B-modules is just the Tate resolution (4.1). The 
complex .CP(A) is also exact, since it is dual to s (A*), which is (due to homogenei- 
ty) fiberwise exact as a complex of vector bundles. 

Set ~ = K e r  {,4"--) ~*_t(1)}, i>0. It is a locally free sheaf, which has a right 
resolution {.~* --) .~* 1 (1) ~ . . .  --) ,4~ (i)}. 

If W is an orthogonal vector bundle over a base variety Y, then we define, 
as above, a sheaf of graded algebras A(W) = (DAi(W) over Y; A~(W) is a vector 
bundle, isomorphic to @A~-2P(W); the corresponding isomorphism sends 

p_->O 

A~-2p(W) first to A~_2p(W) by means of antisymmetrisation of product, and 
then multiplies the result by h p. Denote S*/S the orthogonal bundle over Q, 
whose fiber over an isotropic l=  E, dim l= 1, is l*/l, where t* is the orthogonal 
Complement. 
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4.2. Proposition. There is an exact sequence of  bundles over Q" 

o --, A,_ ~ (S*/S) ( -  l )  , e ,  p , A~(S*/S) ~ 0 

Proof We shall identify Ai(E) with its image in Ai(E) under the antisymmetrized 
product map, so that AI(E)= (~Ai -2p(E)M.  Introduce on A~ a scalar product, 

p>0 
setting the summands in this sum to be mutually orthogonal, and introducing 
on each A~-2p(E) the scalar product, induced by ( , )  on E. Having thus identi- 
fied A~ with A*, we obtain for each l e E  maps l~, r~: A ~ A ~ - I .  For each l e e  
denote ?_z ~: A ' (E )~  A'(E) the convolution with ~:for t/~AI(E) rIJ ~ = (r I, ~); 
for homogenous (DI, 0)2 ((/)1 A 0)2)---I ( =  0)1 A (0)2-d ~)+ 
(-1)aeg~ 4)^ co2. Then for 0)~AP(E)cAp, ~EE we have (Wick's theorem): 

~(0)hk)=(~^0))hk+(0)~r k+l, l~(0)hk)=(0)~r k-1. (4.2) 

The fiber of ~ over IEwQ is K e r { l * : A i ~ A i _ l } .  Let ~-t . . . . .  ~_l~V*/IEv, 
~j~v*-their arbitrary representatives. Set ~(~-l...~-i-1)=vr It follows 
from (4.2) that we obtain a well-defined map ~: Ai-1 ( S * / S ) ( - 1 ) ~  ~i- In order 
to define fl, define f l * ( - 1 ) : A i ( S * / S ) ~ * ( - 1 ) = K e r { A I + I ~ A I + 2 ( I ) }  by 
similar formula /3*(- l ) (~t . . .  ~i)=v~l. . .  ~i. We claim that /3~=0. To see this, 
consider tEv~Q,a~Ai_l(v*/tEv) and suppose that ~(a)=l*(x) for some 
x~Ai+ 1. We must show that (x, f l*(b))=0 for all b~Ai(vt/IEv). It suffices to 
consider a and b of the form a = ( ~  1 ̂  ... ^fcj)h  k, b=(ff'a ^ ... ^~ ' , )h ~, where 
ff~, ~'~v~/lI~v and the expressions inside the brackets are antisymmetrized prod- 
ucts. Choose representatives w~, w'~ of ~ ,  ~'~. Then ~(a )=(v^wl  ^ . . . ^wj )h  k 
- l~  (x), where x =(w l ^ ... ^ w j) h k + l. The scalar product ( x, fl* ( b ) ) can be 
non-zero only if s = k + l ,  r = j - 1 .  In this case ( w ~ ^ . . . ^ w j ,  v^w'~ 
^ ... ^ w~_l)=0,  since wi_l_v. So, f l~=0.  It is clear that ~ is injective and/3 is 
surjective. The exactness follows now from dimension count. 

4.3. Let CI=CI(E)=A(E) / (h -1 )A(E)  be the usual Clifford algebra of E, with 
its 7Z/2-grading: CI(E)=Cto(E)@CII(E ). If N is even, then the algebra Ct(E) 
is simple. The irreducible left Cl(E)-module M, being restricted to CIo(E), is 
decomposed canonically into the sum of two irreducible summands: M 
= M + ~ M _ .  One can form A-modules J / _ = { M _ , M + , M _ , . . . } ,  J[§ 
= { M + ,  M_ ,  M+ . . . .  }, in which h acts by identity and the grading starts from 
zero. The complexes .L,e(./r177 are right resolutions of some vector bundles over 
Q. If N = 0  (mod4), we define the bundles 2;+ and X_ over Q as dual to the 
bundles, defined by complexes ~(o//§ and Le(~'_), respectively. If N~2  
(mod4), we define X+ and X_ in the other way: 2;* is quasi-isomorphic to 
&e(~'_) and vice versa. If N is odd, then Cl(E) is a sum of two simple algebras. 
To an irreducible module M over any of its simmands corresponds A-module 
~ ' = { M ,  M, M, ...} (the grading starts from zero). This module does not, up 
to isomorphism, depend on the choice of the summand. The complex L~(o//) 
is a resolution of some bundle over Q, whose dual we denote 2;. In this notatiot~s, 
we have: for N odd, Z * = Z ( - 1 ) ;  for N = 0  (mod4), Z * = Z ~ ( - 1 ) ;  for N =--2 
(mod 4), 2;~: = Z •  as follows from the behaviour of spinor representatio~:s 
under dualisation I6]. 
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For N = 3 ,  Q=p1, the bundle X is (gel(l). For N = 4 ,  Q=p1 x p1, the bundles 
S+ and S_ are (Pe, • 0) and Cel • 1). For N = 6 ,  Q is the Grassmanian 
G(2, ~4), the bundles S+ and X_ are S* and ~24/S, where S is the tautological 
2-dimensional bundle over the Grassmanian. 

The bundles S or 2;+, S_ are the spinor bundles for the orthogonal bundle 
St/S over Q. In other words, we have the following fact. 

4.4. Proposition. CI(St/S) is isomorphic, as a sheaf of algebras on Q, to 
End (S+ • X_) for N even, and to End (2:) �9 End_ (2:) for N odd. 

Proof. Let ~v~Q and w l v .  Then w anticommutes with v in A. Hence, for 
N even, w defines a transformation Ker {v: Me- - ,M~}  ~ K e r  {v: M~--*Me}, 
i.e. a map from the fiber of 2: • over ~v  to the fiber of X~. This defines the 
required isomorphism CI(St/S) -~ End (S+ �9 X_). The case of odd N is consid- 
ered similarly. [] 

4.5. Consider on Q x Q the following complex of sheaves C'. Its terms C-  i equal 
~ ( 9 ( - i )  (so C" is infinite to the left). The differential ~ / [ ~ O ( - i ) ~ - 1  
~ ] ~ ( - i +  1) arises from the morphism of complexes 

{.4" ,.4"_ ~ (1) ,...} ~ (9(-i)  

{~*x , ~ ' 2 ( 1 )  , ...} [k-] (_9(- i + l) 

which on each term equals Zl~, | Ix,, in the notation of n.4.1. Since the structure 
of left A-module on A* is dual to the structure of right A-module on A, and 
the multiplication from the left commutes with the multiplication from the right, 
d is indeed a morphism of complexes. 

We are going to show that C" is a resolution of the sheaf (94, where A c Q x Q 
is the diagonal. This fact is valid in more general context: for an arbitrary 
projective variety Y c P "  such that its projective coordinate algebra rElY] is 
Koszul (as shown in [1], there are "very many"  such varieties). Until the end 
of n.4.6, B r will denote the algebra ~ [Y] ,  A=Ext~y(~,  ~)-its Priddy dual. To 
each graded left A-module corresponds, as above, a complex ~s of sheaves 
on Y, and ~q(A*) is exact. The definitions of sheaves ~ / and  of the complex 
C" also extend literally to this case. 

4.6. Proposition. I f  Y c P" is a projective variety such that Br = IE [ Y] is a Koszul 
algebra, then the complex of sheaves on Y x Y 

{... ~ % N (.o(- 2)--, ~ Nr  1)-~. o,,• r} = C" 

is a left resolution of (94, A c Y x Y being the diagonal. 

Proof. We shall write B for B r. Set Bz= @B i |  M(B 2) the category of graded 
B2-modules, Q s h ( Y x  Y) - the category of quasicoherent sheaves on Y 
• Y, L: M(B 2) ~ Q s h ( Y x  Y) - the localisation functor of Serre [9]. It is exact 
and compatible with infinite direct sums. Making use of Serre's theorem, which 
Connects coherent sheaves on a projective variety and finitely generated modules 
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over its coordinate algebra, and considering the resolution ~,-~ {.4" --, .4"_ 1 (1) 
-", ... ~.4"(i)}, we find that the complex C" is quasi-isomorphic to L(D'), where 
D" is the total complex of the following double complex D'" of BZ-modules: 

' ( ~  Bi-2| 

, O B i - 2 | 1 7 4  
i 

, ( ~  B,-z|174 ,~Bi| 
i i 

) OBi_I| 

, @ B i - x | 1 7 4  
i 

There is a natural morphism of complexes q~: D ' ~  ( ~ B 2 i  , compatible (under 
the identification L((~B2i)= (94) with the morphism C ' ~  (94. We want to show 
that (k is a quasi-isomorphism. 

The terms of the double complex D'" have themselves a grading. According 
to this grading, D'" splits into a direct sum of double complexes Di', ieZ. To 
specify D]" exactly, we can define it to be the summand, containing the summand 
B~ | B~ of the term in the right od D". Then, each D~" has only finitely many 
non-zero terms and rows of D~" are just graded parts of the generalised Koszul 
complex 

{ B o | 1 7 4  * At-1 ... ~B, |  

tensored with some vector spaces. Hence, they all are exact except those, which 
contain only one non-zero term, i.e. Bo |  @ Bzi (for D~'). This term maps 
identically by q~ to Bzi. So, ~b is a quasi-isomorphism. The proposition is proved. 

We return now to the case of quadrics. 

4.7. Proposition. The kernel of the differential C - N + 3 ~  C -lv+4 is isomorphic to 
2;(--1)~S,(--N+2)for N odd, to 

Z+ (-- 1) ~q Z + ( - -N + 2) (~ Z_ (-- 1)l-xlZ_(--N+2)for N - 2  (mod 4), 

and to 

2;+ ( -  1)[]Z_ ( - N + 2 )  ~3 2_ ( -  1)[]2;+ ( - N +  2)for N = 0(mod 4). 

Proof The multiplication by h induces isomorphisms A i ~ A i +  2 for i>>_N--l, 
and the projection A~ ~ Cl~(E) is an isomorphism for such i. Here and below 
i-means i modulo 2. Correspondingly, we have ~ - ~ + 2 ,  i > N - 2 ,  C i-2 
= C i ( 0 , - 2 ) ,  i < - N + 2 .  Denote the kernel in question by R. Then R is the 
cokernel of the "stable" differential C -N+ 1 ~ C-N+2. Hence, one can construct 
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a left resolution of R as the total complex of the following double complex: 

... ,~T*N~-i(--2,--N+I) , ~T*( - -2 , - -N+2)  

(4.3) 

. . .  , C T ~ ( - 1 ,  - N +  I)  , C T ] : i ( -  1, - -N+2)  

The differentials in (4.3) are maps, dual to the operators of left or right Clifford 
multiplications by isotropic vectors in E. From the structure of CI(E) as a 
bimodule over itself, we find that for odd N the complex (4.3) is isomorphic 
to ~ (~r ( - 1) [] L~(JO* ( -  N + 2), for N ~- 2 (mod 4) - to 

s ( j / ) ,  ( _  1)[] ~a ( j / ) ,  ( _  N + 2) G ~ ( ~ , + ) ,  ( _  1)[] ~9o(~,+),(_ N + 2), 

and for N = 0 (rood 4) - to 

~ e  ( J / ) *  ( - 1) [ ]  5 e  6 / / / + ) *  ( - N + 2) ~ ~ e  (./#+)* ( - 1) 

[]LP(~tg_)*(-N + 2). Q.E.D. 

4.8. We shall use the unified notation St • meaning that for even N both bundles 
S+, 2:_ are considered, and for odd N - the bundle X. Consider the following 
sets of sheaves on Q: 

X =  {Z~• 1), ~N-3 . . . . .  7Jo =(9} Y={S(+)(-N+2) ,  d ~ ( - N +  3), ..., (9}, 

endowed with indicated here partial orders (for N even, Z+ and 2;_ are incompa- 
rable; the spinor bundle(s) is (are) less than all others). 

4.9. Proposition. For each two bundles ~, c~ of the set X (resp. Y), Exti(~, f#)=0 
for all i>0,  Hom(~,, fr 0 only i f ~ < ~  and Hom (~,, ~ ' ) = C .  

Proof. First consider the set Y. Only E x t ' ( ~  fg), where ~ or ff have the form 
ZI+)(-N+2),  demand calculation. We proceed as recalled in the end of w 
Let F be the space of complete isotropic flags in E (one component of such 
space for even N). It is the quotient of Spin (N) by the Borel subgroup. Integer 
weights, i.e. characters of maximal torus in Spin (N), are determined by n-tuples 
of numbers (al, ..., a,), n = [N/2], which are either all integers, or all half-integers, 
but not integers. Corresponding invertible sheaf on F will be denoted 
0(al . . . . .  a,). Denote also p: F ~ Q the projection. Then Z(+) 
.~R~ dJ((1/2), (1/2), ..., (_)(1/2)). The calculation of Ext'((9(-j), X~+)(-U+2) 
~s reduced therefore to the calculation of the cohomology of the invertible sheaf 
6((1/2)+j--N+2, (1/2) . . . . .  (+)(1/2)) on F, where j = 0 ,  1 . . . . .  N - 3 .  It is done 
by using Bott's theorem [13]. Consider, for example, the case of even N=2n. 



502 M.M. Kapranov 

The half-sum p of positive roots is ( n - l , n - 2  . . . .  ,1, 0). A weight (a~ . . . . .  a,) 
is dominant, iff a~>...>a,,_~>la,,}. The Weyl group W acts on weights by 
permutations of components and changes of signs in an even number of places. 
Adding p to the weight corresponding to the invertible sheaf in question, we 
obtain the weight 

X = (-- n + (3/2) +j ,  n-- (3/2), n-- (5/2) . . . .  , _ (1/2)). 

Since I - n  + (3/2)+j[ ~ n-(3/2),  there are two components of X having the same 
absolute value. This property will remain in force after action of an element 
we W, sending Z to the dominant Weyl chamber. When after that we shall sub- 
tract p, we shall obtain a non-dominant weight. This, by Bott's theorem, signifies 
that (9((1~2)+j-N+2,(1/2) ..... +(1/2)) and hence H o m ( ~ ( - j ) ,  S •  
has no cohomology. The sheaves Hom (~(_+~(-N + 2), (9 ( - j ) )  for j = 0, 1 . . . . .  N 
--3 are R ~ p .  of ample invertible sheaves on F and hence have no higher coho- 
mology. To end the proof for the set Y, it remains to calculate Ext's between 
2~• Suppose N to be, say, even: N = 2n. Then End (2~+) ~ End (2;_) = Clo(S+/S) 
is isomorphic as a bundle to the s u m  ~A2i(S't/S), and 
Hom(,~+, 2Y_)GHom(2~_, X+) - to GA2i+I(S+/S). The Hodge operator �9 
induces an isomorphism of vector bundles AJ(S*/S)--A~C-2-J(S+/S), and for j 
< n - 1  we have that Ai(S+/S)=R~ (9(0, 1, ..., 1, 0, ..., 0) (j units). The details, 
as well as the case of odd n, are left to the reader. 

Turn now to the set X. Tensoring the resolutions of sheaves ~* and ~, 
we find that Hom (~,  ~) is quasi-isomorphic to the total complex of the follow- 
ing double complex: 

T T T 

/~o |  ,~0|  1(-- i+ 1) , . . .  ,-4o| 

graded so that deg (~i |  0). Denote this double complex R'" and its 
total complex R'. Considering the rows of H~ R"), we find that H~ R') 
is quasi-isomorphic to Ai-j in the 0-th place (and to zero, if i-j<O). Consider 
first the case 0 =< i, j =< N - 3. Then the terms of R'" do not have higher cohomology 
and we deduce that ExtP(~, ~ ) = 0 ,  p>O, and H o m ( ~ ,  ~ ) = 0  unless i>=j. To 
calculate Ext's between ~•  and ~,O<i<N-3,  note that for N even 
and i > N - 2  the bundle ~ is a sum of several copies of S* or 27*_ (depending 
on the parity of/) ,  and for N even and i>  N--2 ,  the bundle ~ is a sum of 
several copies of 2~*. By scrutinizing the double complex R'" once again we 
find that Exff (~,  ~ ) =  0 for p > 0 and all i, j. Indeed, Terms of R'" can, in general, 
have also H N- 2. But terms with non-trivial H N- 2 are situated in such places, 
that they can contribute only to I-Ip(Q, R ' ) = E x f f ( ~ ,  ~)  for p<0 .  (of course, 
contributions to negative Ext's must eventually vanish in the spectral sequence). 
Also, from the form of R'" we find that Exff(~,  ~ ) = 0  for all p, if O<i<N-3 
and j_>__ N -  2. The proposition is proved. 

Let 9.I=9.I(E) and ~=~B(E) be the full subcategories in Sh Q(E) with the 
sets of objects, respectively, X and Y 
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4.10. Theorem. Db(Q(E)) is equivalent to Tr 9~(E) and to Tr ~(E)  as a triangulated 
category. 

The theorem follows in a standard way from Propositions 4.6, 4.7 and 4.9. [] 

4.11. Proposition. Consider the correspondence between sheaves ~ Y and ~ X  
defined by the property: Hi(Q, ~ | G)@O for at least one j. This correspondence 
defines a bijection ~: Y-~X, sending ( 9 ( - j ) - ~ ,  O<=j<=N-3, Z ( - N + 2 )  
- . S ( - 1 )  for N odd, Z •  for N - O  (mod4), Z + ( - N + 2 )  
-~Z• for N--2(mod4) .  Sheaves ~ |  for ~ Y have only one non- 
trivial cohomology group, and this group is isomorphic to ~. Its number equals j, 
/f.~-= (9(-j),  and N -  2, /f ~ = Z(• N + 2). 

The proof, similar to that of proposition 4.9, is left to the reader. [] 

4.12. The posets X and Y are clearly ranked. Let l be the rank function on 
Y such that 1((9) = 0, and hence H -  t(~)(Q, ~ | a (~))  = ~,  ~ e  Y From the gener- 
alized Beilinson spectral sequence corresponding to the resolution of the diago- 
nal, constructed in propositions 4.6 and 4.7, we deduce that for ~ Ythe complex 
~, defined according to w is quasi-isomorphic to a ( ~ ) [ - I ( ~ ) ] .  Denote 92~ 
and ~ the graded categories, obtained from 9.1 and ~ by assigning to 
H o m ( ~  if) the degree l (~)- l ( fr  Then .~I is quasi-isomorphic to ~ ,  and 
- to 9.1~. In other words, we have 

4.13. Corollary. 9.Ig and ~ are Koszul categories with quadratic relations, Priddy 
dual to each other. [] 

The finite resolution of the diagonal, construct as in this section, is also 
a particular case of the complex from 2.18. 

4.14. In the rest of this section we describe a modification of the previous con- 
struction to the case of incidence quadrics in pN- 1 X pN- 1, which is also the 
flag variety F(1, N -  1, CN). This modification allows us to give another, different 
from given in w 3, description of Db(F(1, N -  1, CN)). The necessary proofs are 
similar to the case of projective quadrics and are therefore omitted. 

So, let E be an N-dimensional vector space, N__>2, L ~ P ( E ) x P ( E * )  - the 
incidence quadric, defined by the equation ZXiYi=O, where xi~E*, yieE are 
dual bases. The bigraded Clifford algebra A is generated by ~ E * ,  deg ~=(1,  0), 
qr degq=(O, 1), and h, degh=(1 ,1) ,  which are subject to relations 
~ ' + ~ ' ~ = 0 ,  qq'+q'q=O, ~t /+q~=<~,  t/) h, ~h=h~, rlh=hq. Here ~,~'~E, 
t/, t/'sE* are arbitrary. 

A bigraded left A-module N =  ~ N ~  defines a double complex ha(N) with 
terms ha (N)O = N O | (9(i, j). 

4.I5. Examples. a) Truncations of the module A*. 

A~_i,j- 

A .* . A '~- l ,  j -  l i t , J - 1  

A.*.,~ A~_ ~,~ i 
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deg A*j = 0. The total complex of the double complex ~ (A*~. j) is a right resolu- 
tion of a vector bundle on L, denoted ~i- 

b) Modules of superfunctions. 

. . . . .  

J4i= AiE Ai+I E! 

Generators l e E  act on J/4~ by Grassmann multiplication, and r/~E* act as 
Grassmann derivations. If we identify L with F(1, N - l ,  E) and denote l c n  
the tautological flag on L, then the total complex of L,r 3 is a right resolution 
of the bundle A i- 1 (re//) | I. 

4.16. Consider on L x L the following double complex of sheaves C": 

, % o |  Lo)  

, % 1 N 1 ( 9 ( -  1, -i) 

T 

~' ( gLxL  

, eo~ N (9(o, - l )  

T 
where the horizontal differentials equal to ~ l~',| Ix, and the vertical ones -  
to ~l*~| Here ~i is a base of E=Alo,  xi - the dual base of E* 
=H~ (9(1, 0)), ~/i- a base of E * = A o l ,  y i -  the dual base of E=H~ (9(0, 1)). 

4.17. Proposition. The total complex of C'" is a left resolution of the structure 
sheaf Oa of the diagonal A c L x L. I f  we truncate C", deleting all terms except 
those belonging to the intersection of the first N--  1 rows (from O-th up to N - 2 -  
th) and the first N -  2 columns, then the total complex of the remaining double 
complex will have, apart from H ~  (ga, only one non-trivial cohomology sheaf, 
and namely in the last term. This cohomology sheaf (i.e. the kernel) is isomorphic 
to 

N - 1  

@ Ai(Tz/t)(-- 1, O)N1A'(u/I)*(--N+2, - N +  1). [] 
i=0 

Hence we obtain a finite resolution of the diagonal on L x L. 
Consider the following sets of sheaves on L: 

Y'= {(9(i,j), - N + 2 < i , j < O ,  A~Or/l)*(-N+2, - N +  1), 0 < i < N - 2 } ,  

X ' =  {~p - N + 2 < i , j < O ,  Ai(~/l)(--1, 0), 0 < i < N - 2 } .  

Introduce on Y' a partial order, setting (9(i,j)<(9(k, l), iff i ~ k  and j>=l, and 
setting the sheaves A~(rr/l) * ( -  N + 2, - N + 1) to be incomparable with each other 
and less than (9 ( - N  + 2, - N  + 2). Similarly introduce a partial order on X'. 

4.18. Proposition. I f  ~, f# are elements of X' (resp. Y'), then ExP'(~, f~)=0 for 
p > 0, Hom (~,, f#) = 0 unless ~: ~ f#, and Horn (~, ~-) = tE. [] 
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Denote 9./' and ~B' the full subcategories in Sh (L) on the sets of objects 
X' and Y'. 

4.19. Theorem. Db (L) is equivalent to Tr (9.I') and Tr (~B') as a triangulated catego- 
ry. [] 

4.20. The poset Y' is ranked with rank function l: l((.9(i,j))=i+j, l(Ai(n/l) * 
( - N + 2 , - - N + l ) ) = - - 2 N + 3 .  Denote ~ the bijection Y ' ~ X ' ,  sending 
r  - j )  to ~ ,  A~(n / l )* ( -N+2,  - N +  1) - to A~(n/l)( - 1, 0). Then the follow- 
ing orthogonality relation holds: 

H~(L' ~" | f~) = { i  

for all i, if f f # ~ ( ~ )  
for i # - 1 ( ~ ) ,  if fg=e(o~) 
for i = - l ( ~ - ) ,  if f g = a ( ~ ) .  

Hence for ~-e Y' the complex ~ is quasi-isomorphic to ct ( ~ - ) [ - I ( ~ ) ] .  Introduc- 
ing, analogously to n. 4.12, the graded categories 9.I~ and ~3~, we find that they 
are Koszul categories, Priddy dual to each other. 

4.21. Examples. If N = 3 ,  then the set Y' contains only invertible sheaves: 
Y'={(_9(i,j)}, where ( i , j ) e { ( - 1 , - 2 ) ,  ( - 2 , - 1 ) ,  ( - 1 , - i ) ,  ( - 1 , 0 ) ,  ( 0 , - 1 ) ,  
/0, 0)}. 

w 5. Representations of parabolic subgroups in GL (N, ~)  

5.1. Let P=P(i~,  . . . ,  i k ,  n ) ~ G L ( N )  be the parabolic subgroup, the stabilizer 
of a flag of subspaces V/~ ~ V~2 ~ . . .  ~ V/~ c V~, dim Vj =j. Consider the set 2~ 
= X(i~, ... ,  ik, n) of representations of P, consisting of 

where ~j, j = l ,  ..., k, runs over Young diagrams with no more than ij rows 
and no more than i~+t- i j  columns (we set ik+~ =n), and ~k+l is an arbitrary 
non-increasing senuence of n integers. Denote P-mod the category of all finite- 
dimensional representations of P as an algebraic group and ~ = ~l(i~ . . . . .  ik, n) 
- the full subcategory in P-rood on the set of objects ~ .  The aim of this section 
is to prove the following fact. 

$.2. Theorem. Db(P-mod) is equivalent to Tr (~) as a triangulated category. 

The proof  relies on the consideration for each WeOb P-mod of the corre- 
sponding homogenous vector bundle 17V on the flag variety F(il . . . . .  ik, n, CN), 
where N is sufficiently large. We shall use the following well-known fact. 

5.3. Lemma. An algebraic action of GL (N, IF.) by affine transformations on an 
affine space has a f ixed point. [] 

The canonical resolution (3.3) of the bundle 17II does not, in general, yield 
a complex of representations of P, and by two reasons. First, the spaces 
b/~(F, ITv|  can have a non-trivial structure of GL(N)-module.  This non- 
triviality, however, will be extinct for N sufficiently large (Lemma 5.5 below). 
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Secondly, the resolution (3.3) is canonical only up to homotopy equivalence, 
and the possibility to choose a homogenous resolution for a homogenous com- 
plex is yet to be proved. 

5.4. Lemma. A homogeneous complex ~ "  on F=F(i l  . . . . .  ik, n, ~N) has, in the 
homotopy class of its canonical resolution (3.3), a homogenous representative. 

Proof. In w 3, we have constructed a true complex over Db(F) 

. . . - ,  Q R F ( F , ~ ' | 1 7 4  (5.1) 
l(~) = i 

and a canonical Postnikov system in Db(F), attached to this complex, which 
realises ~-" as its convolution. Take for RF the graded space of hypercohomology 
with zero differentials and denote Z i the i-th term of the complex (5.1) thus 
understood (i<0). Each Z i is equipped with a natural G L  (N)-action, and we 
have to choose equivariant representatives for B-terms of our Postnikov system. 
To do this, we proceed as explained in n. 3.3 (on the example of Grassmann 
varieties), but a bit more carefully. At the i-th step we have a well-defined 
homotopy class of morphisms Z -  i ___, B -  i. This homotopy class is an affine space. 
If we assume by induction that B -i is already represented by a homogenous 
complex, then this affine space acquires a GL(N)-action. By Lemma 5.3, this 
action has a fixed point. We define B-~- 1 as the cone of the morphism, corre- 
sponding to this fixed point. Thus proceeding, we obtain a desired homogenous 
resolution. []  

Now, suppose given a finite complex W ' e O b  Db(p-mod). Consider the com- 
plex W ' |  (det ~)| where m is large enough (with respect to W') and consider 
the corresponding homogenous vector bundle (W" | (det V,)| ~ on 
F(il, ..., ik, n, ~N), where N is large enough with respect to W" and m. 

5.5. Lemma. For every W'~ObDb(P-mod) there exists mo~N such that u 
>mo3No~N such that V N > N  o the homogenous resolution of the complex 
(W" | (det V,)| ~ on F(il . . . .  , JR, n, ff~N) originates from a complex of representa- 
tions of the group P, which we denote R'(W',  m, N). The complex 
R'(W',  m, N)|  1.1,*) | does not depends, modulo the homotopy equivalence, 
from the choice of m > m0, N > No, nor from the choice of equivariant differentials 
in the resolution. 

Proof. First consider some N > n. The terms of the canonical resolution of the 
complex 1,~" are sums of summands of the form D-Ii(F(il . . . . .  ik, n, ~v, 
17V'| q~,)| where ~=(~1 . . . . .  Ctk+l) is a sequence of Young diagrams; ~ 
has ~<(i 2 -  i l )  columns, 0~ 2 has <(i  3 -  i2) columns, . . . ,  ct k has < ( n -  ik) columns, 
~q+ 1 has < ( N - n )  columns. If we ensure the circumstance that all arising ~ 
have trivial G L  (N)-module structure, then the homogenous resolution, consist- 
ing of such terms, must originate from a complex of representations of P. To 
ensure this circumstance, consider the hyperdirect images of I7r174 ~ in the 
projection on the Grassmanian G(n, CN). From the structure of the bundles 
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~, we see that they are direct sums of some 2~ r S. | Z "t + 1 st, where V are some 
dominant (not necessarily positive) weights. The multiplicity, with which such 
a summand enters into a given hyperdirect image, does not depend on the 
choice of N > n .  If we change W" to W'| then each ~, changes to (y~ 
+i, ..., ~,.+1). Now, let us perform a twist by (det(V.) | so as to make all 
~; positive. After that, choose N > n so large, that all obtained Young diagrams 
were contained in the rectangle n x ( N - n ) .  Then, from the Lemma 3.2 b), we 
find that in the cohomology of all the hyperdirect images the group GL (N) 
acts trivially. Using Leray spectral sequence, we see that the GL (N)-action in 
~I~(F, (W'| (V,)| | ~, is also trivial, due to semi-simplicity of represen- 
tations of GL (N). 

Lemma 5.4 gives now a complex of representations of P, consisting of direct 
sums of elements of the set )~ and quasi-isomorphic to W' |  (det V,) | Since 
the transformation (det (V,))@ ? preserves the set 1~, the twist can be inverted, 
and we obtain a resolution of W'. A different choice of differentials in the 
homogenous resolution would lead to homotopy equivalence at the level of 
representations of P. The independence (modulo homotopy equivalence) of the 
obtained complex from the choice of rn and N is also clear. [] 

5.6. Given a morphism ~b: W1 -o Wz in Ob(P-mod), we can represent the morph- 
ism ~;: ~ -o 17V z by an equivariant morpbism of homogenous resolutions, using 
Lemma 5.3. Indeed, let U~ be homogenous resolutions of ~ (N being large 
enough), given by Lemma 5.4. The morphism in question defines a correct homo- 
topy class of morphisms of complexes U~ ~ Uz. This class is an affine space, 
in which acts GL(N). A fixed point in this class is the desired equivariant 
morphism. 

It follows that higher Ext's between elements of X in the category P-mod 
vanish. To see this, consider a diagram W 1 , q J ~ W 2 [i],  in Hot (P-mod), repre- 
senting an element of Exti(W1, W2) (here q is a quasi-isomorphism, Wick). 
Tensor it by (det(V,)) | for m large enough and consider the corresponding 
diagram of equivariant morphisms of homogenous complexes on 
F(q  . . . .  , i k, n, IE N) for N large enough: 

(W 1 | (det V,) | *-- (J | (det V,)| ~ --* (W2 [i] | (det V,)| ~. 

Choose homogenous resolutions for all these complexes. The resolutions for 
(W~ | (det V.)| ~ will be themselves; denote U the homogenous resolution for 
the middle term. Now, represent the morphisms by equivariant morphisms of 
the resolutions. If N is chosen sufficiently large, then all the terms of the resolu- 
tions considered will belong to the set X ( i l  . . . . .  ik, n, N ) .  Since the left arrow 
is a quasi-isomorphism, U must coincide with (I4fl | (det (V,)| ~. Hence, the 
right arrow must be zero, as well as the element of Ext * represented by our 
diagram. 

So, we obtain, by Proposition 2.5, an embedding Tr (~) into Db(P-mod) as 
a full triangulated subcategory. It follows from Lemma 5.5, that every object 
of Db(P_mod) is isomorphic to the image of some object of Tr (~[). Hence, our 
embedding is in fact an equivalence and Theorem 5.2 is proved. 
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