
On compact real or complex manifolds M of dimension n, submanifolds
X ⊂ M have fundamental classes in the top dimensional Hi(X), with no sign
ambiguity if the manifold is complex. By Poincare duality, you have a class
[X] ∈ Hi(M) ∼= Hn−i(M). If X,Y intersect transversely, which means that
at every point in their intersection the tangent spaces intersect transversely in
TpM , then the [X] ∪ [Y ] = [X ∩ Y ]. In Schubert calculus you want to do this
where M = Grk(Cn), and the X’s are Schubert varieties. Then problem is that
they are singular and do not intersect transversely. The standard solution is
Borel-Moore cohomology.

1 Borel-Moore homology

BM homology is the inverse limit

H̄i(X) = lim
←K⊂X

Hi(X,X −K).

If you can imbed M in RN for some N , then we have

H̄i(M) = HN−i(RN ,RN −M).

In particular, it’s independent of the imbedding. If M is compact, then Borel-
Moore homology agrees with normal homology.

Example 1. Compute the homology of the circle using the imbedding in R2.
Contracting everything outside the circle to a point is like the sphere with
two points glued, but it has no H0 because of the relative homology/reduced
homology.

Proposition 1 (From [1], Appendix B.3, Lemma 4). Let V be an algebraic
subset of a nonsingular algebraic variety, and let k be the dimension of V . Then
Hi(V ) = 0 for i > 2k, and H2k(V ) is a free abelian group with a generator for
each k-dimensional irreducible component of V .

Proof. You use the long exact sequence in relative cohomology

Hi(X,Y )→ Hi(X,Z)→ Hi(Y,Z)→ Hi+1(X,Y )→ · · ·

for any Z ⊂ Y ⊂ X, but for the subspaces

M − V ⊂M − Z ⊂M,

where Z is the singular set together with all components of lower dimension to
reduce to the case of a manifold V − Z.

So each variety, which is has one component, has a unique generator in
H̄2k(V ). Since there is a map

H̄i(V )→ H̄i(M),
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which comes from the restriction map in relative cohomology, we obtain a class
[V ] ∈ H̄2k(M).

Now we have to verify that intersections work as desired. Say that X,Y ⊂M
intersect transversely if we can write

X ∩ Y =
⊔
i

Zi

where the codimension of Zi is the sum of the codimensions of X,Y , and for
every z in a Zariski open subset U ⊂ Zi we have that

TzX ∩ TzY = TzZi

as vector subspaces of TzM . The next proposition says that intersections work
as desired for transverse intersections:

Proposition 2 (Fulton [1], equation (9)). If X,Y ⊂ M intersect transversely
in the union of Zi, then we have

[X][Y ] =
∑
i

[Zi]

Proof. The main point is that we have a cup product

∪ : H̄i(X)× H̄j(Y ) = Hn−i(M,M −X)×Hn−j(M,M − Y )→

H2n−i−j(M, (M −X) ∪ (M − Y )) = H̄i+j−n(X ∩ Y )

which is compatible with the cup product on H̄∗(M) ∼= H∗(M) by the induced
maps. So, the only thing that remains to be shown is that the above map sends
([X], [Y ]) to ([X ∩ Y ]), which is independent of the imbedding to M .

2 Schubert cells

We want to apply this to the case M = Grk(Cn). First, we have

Proposition 3 ([1] Lemma 6 from B.6). If ∅ = X0 ⊂ · · · ⊂ Xd = X is a
sequence of closed algebraic subsets of an algebraic variety X, such that Xi\Xi−1
is a disjoint union of varieties Ui,j each isomorphic to an affine space CN , then
the classes [Ūi,j ] of the closures of these varieties give an additive basis for the
Borel-Moore homology groups H̄∗(X) over Z.

Proof. Use the homology of CN and the long exact sequence again.

The Schubert cells are such a decomposition for the Grassmannian. For each
λ a partition that fits in a a k by n− k box, let

Uλ = {rowspan(A) : A is RREF and has a pivot at k + i− λi in row i} ⊂ Grk(Cn).
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So for instance in Gr3(C6), we have

U(2,1) =


 ∗ 1 0 0 0 0
∗ 0 ∗ 1 0 0
∗ 0 ∗ 0 ∗ 1

 ,

noting that it’s standard in Schubert calculus to have indices upside down.
We let Vλ = Ūλ be the closure in the topology of Grk(Cn), (which the next
proposition shows is the same as the closure in the Zariski topology, if you’re
familiar with it).

Proposition 4 ([2] Proposition 3.2.3). For all partitions λ in a k× (n−k) box,
we have

1. The Schubert variety Vλ is an algebraic subvariety of Grk(Cn).

2. Uλ ∼= Ck(n−k)−|λ|

3. Vλ = Ūλ =
⊔
µ⊃λ Uµ

4. Vλ ⊃ Vµ ⇔ λ ⊂ µ.

Proof. The second statement is done using coordinates on the Grassmannian.
The next step is to write down equations of Vλ defined by the vanishing of
certain minors of the matrix, see [2]. Let V ′λ be the variety defined by these
equations. Check that statements 3,4 hold for V ′λ, which is a statement about
sets. Then check that every point of

V ′λ =
⊔
µ⊃λ

Uµ

is a limit of points in Uλ using local coordinates, so that V ′λ ⊂ Vλ = Ūλ. But
it’s closed and contains Uλ, so we also have Vλ ⊂ V ′λ.

Since each Uλ is isomorphic to affine space Ck(n−k)−|λ|, Proposition 3 applies,
and we find that ∑

i

β2i(Grk(Cn))qi =
∑
λ

qk(n−k)−|λ|

which is the q-binomial coefficient from Roger’s talk.
So we have a basis H̄∗(Grk(Cn)) ∼= H∗(Grk(Cn)), and we’d like to know

how to multiply and expand the cup product. The first issue is that they do not
intersect transversely, so we can’t apply Proposition 2 directly. But, we have
the following:

Theorem 1 (Kleiman, see Coskun’s notes from the webpage. Actually, the real
theorem is much stronger). For generic matrices gi ∈ GLn(C), we have that

g1 · Vλ(1) , ..., gl · Vλ(l)

intersect transversely.
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Proof. Won’t begin to prove that, but the homework exercise shows that it is a
testable statement in practice.

This fixes the first problem of the transverse intersections. The next issue is
that if we compute

g · Vλ ∩ Vµ =
⊔
i

Zi,

the Zi are not themselves Schubert varieties, so we don’t get an expansion

[Vλ] ∪ [Vµ] =
∑
ν

aνλ,µ[Vν ]

which is what we want. Instead what we need is to intersect triples to “extract”
the coefficients aνλ,µ. Let λ∗ be the complement of λ in the box, then rotated

180 degrees, so (2, 1)∗ = (3, 2, 1) in the 3× 3 box for Gr3(C6).

Proposition 5. We have that Uλ and g · Uλ∗ intersect transversely in a single
point, where g is the permutation matrix that puts all coordinates in reverse
order.

Proof. Just think about the example:

g · U(3,2,1) =


 0 1 ∗ 0 ∗ 0

0 0 0 1 ∗ 0
0 0 0 0 0 1

 ,

which intersects U(2,1) transversely in one point. Checking transversality can
be done in local coordinates.

So then combining Theorem 1 with everything

[Vλ][Vµ] =
∑
ν

aνλ,µ[Vν ],

and aνλ,µ is the number of points in

Vλ ∩ g1 · Vµ ∩ g2 · Vν∗ ,

so in particular, it’s a nonnegative integer.

Theorem 2. We have that aνλ,µ is the Littlewood-Richardson coefficient.

Proof. Map H∗(Grk(Cn)) into symmetric functions modulo the ideal of all sλ
for λ not in the box, by sending [Vλ] to sλ. Then you find that this is a ring
homomorphism (and so isomorphism) by checking that the Pieri rule holds on
both sides. This is explained very well in [1].
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