On compact real or complex manifolds M of dimension n, submanifolds $X \subset M$ have fundamental classes in the top dimensional $H_{i}(X)$, with no sign ambiguity if the manifold is complex. By Poincare duality, you have a class $[X] \in H_{i}(M) \cong H^{n-i}(M)$. If X, Y intersect transversely, which means that at every point in their intersection the tangent spaces intersect transversely in $T_{p} M$, then the $[X] \cup[Y]=[X \cap Y]$. In Schubert calculus you want to do this where $M=G r_{k}\left(\mathbb{C}^{n}\right)$, and the X 's are Schubert varieties. Then problem is that they are singular and do not intersect transversely. The standard solution is Borel-Moore cohomology.

1 Borel-Moore homology

BM homology is the inverse limit

$$
\bar{H}_{i}(X)=\lim _{\leftarrow K \subset X} H_{i}(X, X-K) .
$$

If you can imbed M in \mathbb{R}^{N} for some N, then we have

$$
\bar{H}_{i}(M)=H_{N-i}\left(\mathbb{R}^{N}, \mathbb{R}^{N}-M\right)
$$

In particular, it's independent of the imbedding. If M is compact, then BorelMoore homology agrees with normal homology.

Example 1. Compute the homology of the circle using the imbedding in \mathbb{R}^{2}. Contracting everything outside the circle to a point is like the sphere with two points glued, but it has no H_{0} because of the relative homology/reduced homology.

Proposition 1 (From [1], Appendix B.3, Lemma 4). Let V be an algebraic subset of a nonsingular algebraic variety, and let k be the dimension of V. Then $H_{i}(V)=0$ for $i>2 k$, and $H_{2 k}(V)$ is a free abelian group with a generator for each k-dimensional irreducible component of V.

Proof. You use the long exact sequence in relative cohomology

$$
H^{i}(X, Y) \rightarrow H^{i}(X, Z) \rightarrow H^{i}(Y, Z) \rightarrow H^{i+1}(X, Y) \rightarrow \cdots
$$

for any $Z \subset Y \subset X$, but for the subspaces

$$
M-V \subset M-Z \subset M
$$

where Z is the singular set together with all components of lower dimension to reduce to the case of a manifold $V-Z$.

So each variety, which is has one component, has a unique generator in $\bar{H}_{2 k}(V)$. Since there is a map

$$
\bar{H}_{i}(V) \rightarrow \bar{H}_{i}(M)
$$

which comes from the restriction map in relative cohomology, we obtain a class $[V] \in \bar{H}_{2 k}(M)$.

Now we have to verify that intersections work as desired. Say that $X, Y \subset M$ intersect transversely if we can write

$$
X \cap Y=\bigsqcup_{i} Z_{i}
$$

where the codimension of Z_{i} is the sum of the codimensions of X, Y, and for every z in a Zariski open subset $U \subset Z_{i}$ we have that

$$
T_{z} X \cap T_{z} Y=T_{z} Z_{i}
$$

as vector subspaces of $T_{z} M$. The next proposition says that intersections work as desired for transverse intersections:

Proposition 2 (Fulton [1], equation (9)). If $X, Y \subset M$ intersect transversely in the union of Z_{i}, then we have

$$
[X][Y]=\sum_{i}\left[Z_{i}\right]
$$

Proof. The main point is that we have a cup product

$$
\begin{gathered}
\cup: \bar{H}_{i}(X) \times \bar{H}_{j}(Y)=H^{n-i}(M, M-X) \times H^{n-j}(M, M-Y) \rightarrow \\
H^{2 n-i-j}(M,(M-X) \cup(M-Y))=\bar{H}_{i+j-n}(X \cap Y)
\end{gathered}
$$

which is compatible with the cup product on $\bar{H}_{*}(M) \cong H^{*}(M)$ by the induced maps. So, the only thing that remains to be shown is that the above map sends $([X],[Y])$ to $([X \cap Y])$, which is independent of the imbedding to M.

2 Schubert cells

We want to apply this to the case $M=\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right)$. First, we have
Proposition 3 (1] Lemma 6 from B.6). If $\emptyset=X_{0} \subset \cdots \subset X_{d}=X$ is a sequence of closed algebraic subsets of an algebraic variety X, such that $X_{i} \backslash X_{i-1}$ is a disjoint union of varieties $U_{i, j}$ each isomorphic to an affine space \mathbb{C}^{N}, then the classes $\left[\bar{U}_{i, j}\right]$ of the closures of these varieties give an additive basis for the Borel-Moore homology groups $\bar{H}_{*}(X)$ over \mathbb{Z}.
Proof. Use the homology of \mathbb{C}^{N} and the long exact sequence again.
The Schubert cells are such a decomposition for the Grassmannian. For each λ a partition that fits in a a k by $n-k$ box, let
$U_{\lambda}=\left\{\operatorname{rowspan}(A): A\right.$ is RREF and has a pivot at $k+i-\lambda_{i}$ in row $\left.i\right\} \subset G r_{k}\left(\mathbb{C}^{n}\right)$.

So for instance in $\operatorname{Gr}_{3}\left(\mathbb{C}^{6}\right)$, we have

$$
U_{(2,1)}=\left\{\left(\begin{array}{cccccc}
* & 1 & 0 & 0 & 0 & 0 \\
* & 0 & * & 1 & 0 & 0 \\
* & 0 & * & 0 & * & 1
\end{array}\right)\right\}
$$

noting that it's standard in Schubert calculus to have indices upside down. We let $V_{\lambda}=\bar{U}_{\lambda}$ be the closure in the topology of $G r_{k}\left(\mathbb{C}^{n}\right)$, (which the next proposition shows is the same as the closure in the Zariski topology, if you're familiar with it).

Proposition 4 ([2] Proposition 3.2.3). For all partitions λ in a $k \times(n-k)$ box, we have

1. The Schubert variety V_{λ} is an algebraic subvariety of $G r_{k}\left(\mathbb{C}^{n}\right)$.
2. $U_{\lambda} \cong \mathbb{C}^{k(n-k)-|\lambda|}$
3. $V_{\lambda}=\bar{U}_{\lambda}=\bigsqcup_{\mu \supset \lambda} U_{\mu}$
4. $V_{\lambda} \supset V_{\mu} \Leftrightarrow \lambda \subset \mu$.

Proof. The second statement is done using coordinates on the Grassmannian. The next step is to write down equations of V_{λ} defined by the vanishing of certain minors of the matrix, see [2]. Let V_{λ}^{\prime} be the variety defined by these equations. Check that statements 3,4 hold for V_{λ}^{\prime}, which is a statement about sets. Then check that every point of

$$
V_{\lambda}^{\prime}=\bigsqcup_{\mu \supset \lambda} U_{\mu}
$$

is a limit of points in U_{λ} using local coordinates, so that $V_{\lambda}^{\prime} \subset V_{\lambda}=\bar{U}_{\lambda}$. But it's closed and contains U_{λ}, so we also have $V_{\lambda} \subset V_{\lambda}^{\prime}$.

Since each U_{λ} is isomorphic to affine space $\mathbb{C}^{k(n-k)-|\lambda|}$, Proposition 3 applies, and we find that

$$
\sum_{i} \beta_{2 i}\left(\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right)\right) q^{i}=\sum_{\lambda} q^{k(n-k)-|\lambda|}
$$

which is the q-binomial coefficient from Roger's talk.
So we have a basis $\bar{H}_{*}\left(G r_{k}\left(\mathbb{C}^{n}\right)\right) \cong H^{*}\left(G r_{k}\left(\mathbb{C}^{n}\right)\right)$, and we'd like to know how to multiply and expand the cup product. The first issue is that they do not intersect transversely, so we can't apply Proposition 2 directly. But, we have the following:

Theorem 1 (Kleiman, see Coskun's notes from the webpage. Actually, the real theorem is much stronger). For generic matrices $g_{i} \in G L_{n}(\mathbb{C})$, we have that

$$
g_{1} \cdot V_{\lambda^{(1)}}, \ldots, g_{l} \cdot V_{\lambda^{(l)}}
$$

intersect transversely.

Proof. Won't begin to prove that, but the homework exercise shows that it is a testable statement in practice.

This fixes the first problem of the transverse intersections. The next issue is that if we compute

$$
g \cdot V_{\lambda} \cap V_{\mu}=\bigsqcup_{i} Z_{i}
$$

the Z_{i} are not themselves Schubert varieties, so we don't get an expansion

$$
\left[V_{\lambda}\right] \cup\left[V_{\mu}\right]=\sum_{\nu} a_{\lambda, \mu}^{\nu}\left[V_{\nu}\right]
$$

which is what we want. Instead what we need is to intersect triples to "extract" the coefficients $a_{\lambda, \mu}^{\nu}$. Let λ^{*} be the complement of λ in the box, then rotated 180 degrees, so $(2,1)^{*}=(3,2,1)$ in the 3×3 box for $G r_{3}\left(\mathbb{C}^{6}\right)$.

Proposition 5. We have that U_{λ} and $g \cdot U_{\lambda^{*}}$ intersect transversely in a single point, where g is the permutation matrix that puts all coordinates in reverse order.

Proof. Just think about the example:

$$
g \cdot U_{(3,2,1)}=\left\{\left(\begin{array}{cccccc}
0 & 1 & * & 0 & * & 0 \\
0 & 0 & 0 & 1 & * & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\right\}
$$

which intersects $U_{(2,1)}$ transversely in one point. Checking transversality can be done in local coordinates.

So then combining Theorem 1 with everything

$$
\left[V_{\lambda}\right]\left[V_{\mu}\right]=\sum_{\nu} a_{\lambda, \mu}^{\nu}\left[V_{\nu}\right]
$$

and $a_{\lambda, \mu}^{\nu}$ is the number of points in

$$
V_{\lambda} \cap g_{1} \cdot V_{\mu} \cap g_{2} \cdot V_{\nu^{*}}
$$

so in particular, it's a nonnegative integer.
Theorem 2. We have that $a_{\lambda, \mu}^{\nu}$ is the Littlewood-Richardson coefficient.
Proof. Map $H_{*}\left(\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right)\right)$ into symmetric functions modulo the ideal of all s_{λ} for λ not in the box, by sending $\left[V_{\lambda}\right]$ to s_{λ}. Then you find that this is a ring homomorphism (and so isomorphism) by checking that the Pieri rule holds on both sides. This is explained very well in [1].

References

[1] William Fulton. Young Tableaux: With Applications to Representation Theory and Geometry. London Mathematical Society Student Texts. Cambridge University Press, 1996.
[2] L. Manivel and J. R. Swallow. Symmetric functions schubert polynomials and degeneracy loci. 2001.

