Equivariant annular Khovanov homology

Ross Akhmechet

University of Virginia

э

Outline

1. Equivariant link homology

3

- 1. Equivariant link homology
- 2. Annular Khovanov homology

2

- 1. Equivariant link homology
- 2. Annular Khovanov homology
- 3. Building an equivariant annular theory

2

- 1. Equivariant link homology
- 2. Annular Khovanov homology
- 3. Building an equivariant annular theory
- 4. Properties

2

2

• We'll review three Frobenius algebras and their corresponding TQFT.

[Kho06] M. Khovanov, *Link homology and Frobenius extensions*. arXiv:math/0411447 [KR20] M. Khovanov and L.-H. Robert. *Link homology and Frobenius extensions II*. arXiv:2005.08048

Ross Akhmechet (University of Virginia)

э

 ${\scriptstyle \bullet}$ We'll review three Frobenius algebras and their corresponding TQFT.

1. (R_0, A_0) Khovanov homology

[Kho06] M. Khovanov, *Link homology and Frobenius extensions*. arXiv:math/0411447 [KR20] M. Khovanov and L.-H. Robert. *Link homology and Frobenius extensions II*. arXiv:2005.08048

Ross Akhmechet (University of Virginia)

э

• We'll review three Frobenius algebras and their corresponding TQFT.

- 1. (R_0, A_0) Khovanov homology
- 2. (R, A) U(2)-equivariant (also called universal)

[Kho06] M. Khovanov, *Link homology and Frobenius extensions*. arXiv:math/0411447 [KR20] M. Khovanov and L.-H. Robert. *Link homology and Frobenius extensions II*. arXiv:2005.08048

Ross Akhmechet (University of Virginia)

We'll review three Frobenius algebras and their corresponding TQFT.

- 1. (R_0, A_0) Khovanov homology
- 2. (R, A) U(2)-equivariant (also called universal) 3. (R_{α}, A_{α}) $U(1) \times U(1)$ -equivariant

[Kho06] M. Khovanov, Link homology and Frobenius extensions. arXiv:math/0411447 [KR20] M. Khovanov and L.-H. Robert. Link homology and Frobenius extensions II. arXiv:2005 08048 イロン イ団 とく ヨン イヨン

Ross Akhmechet (University of Virginia)

- We'll review three Frobenius algebras and their corresponding TQFT.
 - 1. (R_0, A_0) Khovanov homology
 - 2. (R, A) U(2)-equivariant (also called universal)
 - 3. (R_{α}, A_{α}) $U(1) \times U(1)$ -equivariant
- Each of these TQFTs takes values in the category of graded R_{\star} -modules.

[Kho06] M. Khovanov, Link homology and Frobenius extensions. arXiv:math/0411447 [KR20] M. Khovanov and L.-H. Robert. Link homology and Frobenius extensions II. arXiv:2005.08048

- We'll review three Frobenius algebras and their corresponding TQFT.
 - 1. (R_0, A_0) Khovanov homology
 - 2. (R, A) U(2)-equivariant (also called universal)
 - 3. (R_{α}, A_{α}) $U(1) \times U(1)$ -equivariant
- Each of these TQFTs takes values in the category of graded R_{\star} -modules.
- For a link diagram *D*, let [[*D*]] denote the cube of resolutions / Bar-Natan complex.

[Kho06] M. Khovanov, Link homology and Frobenius extensions. arXiv:math/0411447 [KR20] M. Khovanov and L.-H. Robert. Link homology and Frobenius extensions II. arXiv:2005.08048

- We'll review three Frobenius algebras and their corresponding TQFT.
 - 1. (R_0, A_0) Khovanov homology
 - 2. (R, A) U(2)-equivariant (also called universal)
 - 3. (R_{α}, A_{α}) $U(1) \times U(1)$ -equivariant
- Each of these TQFTs takes values in the category of graded R_{\star} -modules.
- For a link diagram *D*, let [[*D*]] denote the cube of resolutions / Bar-Natan complex.
- Applying each TQFT to [[D]] yields link homology.

[Kho06] M. Khovanov, Link homology and Frobenius extensions. arXiv:math/0411447 [KR20] M. Khovanov and L.-H. Robert. Link homology and Frobenius extensions II. arXiv:2005.08048

- We'll review three Frobenius algebras and their corresponding TQFT.
 - 1. (R_0, A_0) Khovanov homology
 - 2. (R, A) U(2)-equivariant (also called universal)
 - 3. (R_{α}, A_{α}) $U(1) \times U(1)$ -equivariant
- Each of these TQFTs takes values in the category of graded R_{\star} -modules.
- For a link diagram *D*, let [[*D*]] denote the cube of resolutions / Bar-Natan complex.
- Applying each TQFT to [[D]] yields link homology.
- They can be extended to cobordisms with dots.

[Kho06] M. Khovanov, *Link homology and Frobenius extensions*. arXiv:math/0411447 [KR20] M. Khovanov and L.-H. Robert. *Link homology and Frobenius extensions II*. arXiv:2005.08048

Ross Akhmechet (University of Virginia)

- We'll review three Frobenius algebras and their corresponding TQFT.
 - 1. (R_0, A_0) Khovanov homology
 - 2. (R, A) U(2)-equivariant (also called universal)
 - 3. (R_{α}, A_{α}) $U(1) \times U(1)$ -equivariant
- Each of these TQFTs takes values in the category of graded R_{\star} -modules.
- For a link diagram *D*, let [[*D*]] denote the cube of resolutions / Bar-Natan complex.
- Applying each TQFT to [[D]] yields link homology.
- They can be extended to cobordisms with dots.
- For a cobordism S with d dots, its associated map has degree

$$-\chi(S)+2d.$$

[Kho06] M. Khovanov, *Link homology and Frobenius extensions*. arXiv:math/0411447 [KR20] M. Khovanov and L.-H. Robert. *Link homology and Frobenius extensions II*. arXiv:2005.08048

Ross Akhmechet (University of Virginia)

• $R_0 = \mathbb{Z}, A_0 = \mathbb{Z}[X]/(X^2)$

• $R_0 = \mathbb{Z}, A_0 = \mathbb{Z}[X]/(X^2)$

 $\Delta(1) = 1 \otimes X + X \otimes 1$ $\Delta(X) = X \otimes X$

•
$$R_0 = \mathbb{Z}, A_0 = \mathbb{Z}[X]/(X^2)$$

$$\Delta(1) = 1 \otimes X + X \otimes 1$$
$$\Delta(X) = X \otimes X$$

• A_0 is a free R_0 -module with basis 1, X. Set

$$\deg(1) = -1 \qquad \deg(X) = 1.$$

3

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

•
$$R_0 = \mathbb{Z}, A_0 = \mathbb{Z}[X]/(X^2)$$

$$\Delta(1) = 1 \otimes X + X \otimes 1$$
$$\Delta(X) = X \otimes X$$

• A_0 is a free R_0 -module with basis 1, X. Set

$$\deg(1) = -1 \qquad \deg(X) = 1.$$

• Let \mathcal{F} denote the corresponding (1 + 1)-dimensional TQFT.

2

•
$$R_0 = \mathbb{Z}, A_0 = \mathbb{Z}[X]/(X^2)$$

$$\Delta(1) = 1 \otimes X + X \otimes 1$$
$$\Delta(X) = X \otimes X$$

• A_0 is a free R_0 -module with basis 1, X. Set

$$\deg(1) = -1 \qquad \deg(X) = 1.$$

- Let \mathcal{F} denote the corresponding (1 + 1)-dimensional TQFT.
- The Khovanov chain complex is obtained by applying \mathcal{F} to the cube of resolutions [[D]].

э

•
$$R_0 = \mathbb{Z}, A_0 = \mathbb{Z}[X]/(X^2)$$

 $\Delta(1) = 1 \otimes X + \Delta(X) = X \otimes X$

•
$$A_0$$
 is a free R_0 -module with basis 1, X. Set

$$\deg(1) = -1 \qquad \deg(X) = 1.$$

 $+X \otimes 1$

- Let \mathcal{F} denote the corresponding (1 + 1)-dimensional TQFT.
- The Khovanov chain complex is obtained by applying \mathcal{F} to the cube of resolutions [[D]].
- Extend \mathcal{F} to surfaces with dots by interpreting a dot as multiplication by $X \in A_0$.

(日) (四) (로) (로) (로)

(R, A)

• $R = \mathbb{Z}[E_1, E_2], A = R[X]/(X^2 - E_1X + E_2)$

イロト イロト イモト イモト 一日

•
$$R = \mathbb{Z}[E_1, E_2], A = R[X]/(X^2 - E_1X + E_2)$$

$$\Delta(1) = 1 \otimes X + X \otimes 1 - E_1 1 \otimes 1$$

$$\Delta(X) = X \otimes X - E_2 1 \otimes 1$$

•
$$R = \mathbb{Z}[E_1, E_2], A = R[X]/(X^2 - E_1X + E_2)$$

$$\Delta(1) = 1 \otimes X + X \otimes 1 - E_1 1 \otimes 1$$

$$\Delta(X) = X \otimes X - E_2 1 \otimes 1$$

• Set
$$\deg(E_1) = 2$$
, $\deg(E_2) = 4$.

•
$$R = \mathbb{Z}[E_1, E_2], A = R[X]/(X^2 - E_1X + E_2)$$

$$\Delta(1) = 1 \otimes X + X \otimes 1 - E_1 1 \otimes 1$$

$$\Delta(X) = X \otimes X - E_2 1 \otimes 1$$

• Set
$$\deg(E_1) = 2$$
, $\deg(E_2) = 4$.

• As before, set deg(1) = -1, deg(X) = 1

•
$$R = \mathbb{Z}[E_1, E_2], A = R[X]/(X^2 - E_1X + E_2)$$

 $\Delta(1) = 1 \otimes X + X \otimes 1 - E_1 1 \otimes 1$
 $\Delta(X) = X \otimes X - E_2 1 \otimes 1$

• Set
$$\deg(E_1) = 2$$
, $\deg(E_2) = 4$.

- As before, set deg(1) = -1, deg(X) = 1
- Common notation: $E_1 = h$, $E_2 = -t$.

イロト イロト イモト イモト 一日

•
$$R = \mathbb{Z}[E_1, E_2], A = R[X]/(X^2 - E_1X + E_2)$$

$$\Delta(1) = 1 \otimes X + X \otimes 1 - E_1 1 \otimes 1$$

$$\Delta(X) = X \otimes X - E_2 1 \otimes 1$$

• Set
$$\deg(E_1) = 2$$
, $\deg(E_2) = 4$.

- As before, set deg(1) = -1, deg(X) = 1
- Common notation: $E_1 = h$, $E_2 = -t$.
- *R* and *A* are the *U*(2)-equivariant cohomology of a point and of CP¹, respectively.

•
$$R_{\alpha} = \mathbb{Z}[\alpha_0, \alpha_1], A_{\alpha} = R_{\alpha}[X]/((X - \alpha_0)(X - \alpha_1)).$$

•
$$R_{\alpha} = \mathbb{Z}[\alpha_0, \alpha_1], A_{\alpha} = R_{\alpha}[X]/((X - \alpha_0)(X - \alpha_1)).$$

$$\Delta(1) = (X - \alpha_0) \otimes 1 + 1 \otimes (X - \alpha_1)$$

$$\Delta(X) = X \otimes X - \alpha_0 \alpha_1 1 \otimes 1.$$

•
$$R_{\alpha} = \mathbb{Z}[\alpha_0, \alpha_1], A_{\alpha} = R_{\alpha}[X]/((X - \alpha_0)(X - \alpha_1)).$$

$$\Delta(1) = (X - \alpha_0) \otimes 1 + 1 \otimes (X - \alpha_1)$$

$$\Delta(X) = X \otimes X - \alpha_0 \alpha_1 1 \otimes 1.$$

• Set deg $(\alpha_0) = deg(\alpha_1) = 2$.

3

•
$$R_{\alpha} = \mathbb{Z}[\alpha_0, \alpha_1], A_{\alpha} = R_{\alpha}[X]/((X - \alpha_0)(X - \alpha_1)).$$

$$\Delta(1) = (X - \alpha_0) \otimes 1 + 1 \otimes (X - \alpha_1)$$

$$\Delta(X) = X \otimes X - \alpha_0 \alpha_1 1 \otimes 1.$$

• Set deg
$$(\alpha_0) = deg(\alpha_1) = 2$$
.

• Set deg(1) = -1, deg(X) = 1.

2

▲口> ▲圖> ▲注> ▲注>

•
$$R_{\alpha} = \mathbb{Z}[\alpha_0, \alpha_1], A_{\alpha} = R_{\alpha}[X]/((X - \alpha_0)(X - \alpha_1)).$$

$$\Delta(1) = (X - \alpha_0) \otimes 1 + 1 \otimes (X - \alpha_1)$$

$$\Delta(X) = X \otimes X - \alpha_0 \alpha_1 1 \otimes 1.$$

• Set deg
$$(\alpha_0) = deg(\alpha_1) = 2$$
.

- Set deg(1) = -1, deg(X) = 1.
- Let \mathcal{F}_{α} denote the corresponding TQFT.

э
(R_{α}, A_{α})

•
$$R_{\alpha} = \mathbb{Z}[\alpha_0, \alpha_1], A_{\alpha} = R_{\alpha}[X]/((X - \alpha_0)(X - \alpha_1)).$$

$$\Delta(1) = (X - \alpha_0) \otimes 1 + 1 \otimes (X - \alpha_1)$$

$$\Delta(X) = X \otimes X - \alpha_0 \alpha_1 1 \otimes 1.$$

• Set deg
$$(\alpha_0) = deg(\alpha_1) = 2$$
.

- Set deg(1) = -1, deg(X) = 1.
- Let \mathcal{F}_{α} denote the corresponding TQFT.
- R_{α} and A_{α} are the $U(1) \times U(1)$ -equivariant cohomology of a point and of \mathbb{CP}^1 , respectively [KR20].

э

(R_{α}, A_{α})

•
$$R_{\alpha} = \mathbb{Z}[\alpha_0, \alpha_1], A_{\alpha} = R_{\alpha}[X]/((X - \alpha_0)(X - \alpha_1)).$$

$$\Delta(1) = (X - \alpha_0) \otimes 1 + 1 \otimes (X - \alpha_1)$$

$$\Delta(X) = X \otimes X - \alpha_0 \alpha_1 1 \otimes 1.$$

• Set deg
$$(\alpha_0) = deg(\alpha_1) = 2$$
.

- Set deg(1) = -1, deg(X) = 1.
- Let \mathcal{F}_{α} denote the corresponding TQFT.
- R_{α} and A_{α} are the $U(1) \times U(1)$ -equivariant cohomology of a point and of \mathbb{CP}^1 , respectively [KR20].
- The extensions (R, A), (R_α, A_α), and others were studied by Khovanov-Robert [KR20].

2

$$R_0 = \mathbb{Z} \qquad R = \mathbb{Z}[E_1, E_2] \qquad R_\alpha = \mathbb{Z}[\alpha_0, \alpha_1]$$

$$A_0 = \frac{R_0[X]}{(X^2)} \qquad A = \frac{R[X]}{(X^2 - E_1 X + E_2)} \qquad A_\alpha = \frac{R_\alpha[X]}{((X - \alpha_0)(X - \alpha_1))}$$

$$\mathcal{F} \qquad \mathcal{F}_\alpha$$

2

$$\begin{array}{ll} R_0 = \mathbb{Z} & R = \mathbb{Z}[E_1, E_2] & R_\alpha = \mathbb{Z}[\alpha_0, \alpha_1] \\ A_0 = \frac{R_0[X]}{(X^2)} & A = \frac{R[X]}{(X^2 - E_1 X + E_2)} & A_\alpha = \frac{R_\alpha[X]}{((X - \alpha_0)(X - \alpha_1))} \\ \mathcal{F} & \mathcal{F}_\alpha \end{array}$$

• Both (R, A) and (R_{α}, A_{α}) specialize to (R_0, A_0) .

э

$$R_0 = \mathbb{Z} \qquad R = \mathbb{Z}[E_1, E_2] \qquad R_\alpha = \mathbb{Z}[\alpha_0, \alpha_1]$$

$$A_0 = \frac{R_0[X]}{(X^2)} \qquad A = \frac{R[X]}{(X^2 - E_1 X + E_2)} \qquad A_\alpha = \frac{R_\alpha[X]}{((X - \alpha_0)(X - \alpha_1))}$$

$$\mathcal{F} \qquad \mathcal{F}_\alpha$$

- Both (R, A) and (R_{α}, A_{α}) specialize to (R_0, A_0) .
- (*R*, *A*) specializes to Lee's deformation by setting $E_1 = 0, E_2 = -1$ and to Bar-Natan's theory by setting $E_1 = 1, E_2 = 0$.

イロト 不得 トイヨト イヨト

$$\begin{array}{ll} R_0 = \mathbb{Z} & R = \mathbb{Z}[E_1, E_2] & R_\alpha = \mathbb{Z}[\alpha_0, \alpha_1] \\ A_0 = \frac{R_0[X]}{(X^2)} & A = \frac{R[X]}{(X^2 - E_1 X + E_2)} & A_\alpha = \frac{R_\alpha[X]}{((X - \alpha_0)(X - \alpha_1))} \\ \mathcal{F} & \mathcal{F}_\alpha \end{array}$$

- Both (R, A) and (R_{α}, A_{α}) specialize to (R_0, A_0) .
- (*R*, *A*) specializes to Lee's deformation by setting $E_1 = 0, E_2 = -1$ and to Bar-Natan's theory by setting $E_1 = 1, E_2 = 0$.

Expanding

$$(X - \alpha_0)(X - \alpha_1) = X^2 - (\alpha_0 + \alpha_1)X + \alpha_0\alpha_1,$$

we see that (R_{α}, A_{α}) is an extension of (R, A) via

$$E_1 \mapsto \alpha_0 + \alpha_1, E_2 \mapsto \alpha_0 \alpha_1.$$

2

• Consider the discriminant $\mathcal{D} = (\alpha_0 - \alpha_1)^2$ of $(X - \alpha_0)(X - \alpha_1)$.

э

- Consider the discriminant $\mathcal{D} = (\alpha_0 \alpha_1)^2$ of $(X \alpha_0)(X \alpha_1)$.
- Let $R_{\alpha D}$, $A_{\alpha D}$ denote the extension of R_{α} and A_{α} by inverting D

э

イロン イ団 とく ヨン イヨン

- Consider the discriminant $\mathcal{D} = (\alpha_0 \alpha_1)^2$ of $(X \alpha_0)(X \alpha_1)$.
- Let $R_{\alpha D}$, $A_{\alpha D}$ denote the extension of R_{α} and A_{α} by inverting D

$$R_{\alpha \mathcal{D}} = R_{\alpha}[\mathcal{D}^{-1}], \quad A_{\alpha \mathcal{D}} = A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}}.$$

э

イロン イ団 とく ヨン イヨン

- Consider the discriminant $\mathcal{D} = (\alpha_0 \alpha_1)^2$ of $(X \alpha_0)(X \alpha_1)$.
- Let $R_{\alpha D}$, $A_{\alpha D}$ denote the extension of R_{α} and A_{α} by inverting D

$$R_{\alpha \mathcal{D}} = R_{\alpha}[\mathcal{D}^{-1}], \quad A_{\alpha \mathcal{D}} = A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}}.$$

• There are special elements

$$e_0 := rac{X - lpha_0}{lpha_1 - lpha_0}, \quad e_1 := rac{X - lpha_1}{lpha_0 - lpha_1} \in A_{lpha \mathcal{D}}.$$

- Consider the discriminant $\mathcal{D} = (\alpha_0 \alpha_1)^2$ of $(X \alpha_0)(X \alpha_1)$.
- Let $R_{\alpha D}$, $A_{\alpha D}$ denote the extension of R_{α} and A_{α} by inverting D

$$R_{\alpha \mathcal{D}} = R_{\alpha}[\mathcal{D}^{-1}], \quad A_{\alpha \mathcal{D}} = A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}}.$$

• There are special elements

$$\mathbf{e}_0 := rac{X - lpha_0}{lpha_1 - lpha_0}, \quad \mathbf{e}_1 := rac{X - lpha_1}{lpha_0 - lpha_1} \in A_{lpha \mathcal{D}}.$$

• They form a basis for $A_{\alpha D}$ and satisfy

$$e_0+e_1=1,\;e_0e_0=e_0,\;e_1e_1=e_1,\;e_0e_1=0.$$

- Consider the discriminant $\mathcal{D} = (\alpha_0 \alpha_1)^2$ of $(X \alpha_0)(X \alpha_1)$.
- Let $R_{\alpha D}$, $A_{\alpha D}$ denote the extension of R_{α} and A_{α} by inverting D

$$R_{\alpha\mathcal{D}} = R_{\alpha}[\mathcal{D}^{-1}], \quad A_{\alpha\mathcal{D}} = A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha\mathcal{D}}.$$

• There are special elements

$$\mathbf{e}_0 := rac{X - lpha_0}{lpha_1 - lpha_0}, \quad \mathbf{e}_1 := rac{X - lpha_1}{lpha_0 - lpha_1} \in A_{lpha \mathcal{D}}.$$

• They form a basis for $A_{\alpha D}$ and satisfy

$$e_0 + e_1 = 1, \ e_0 e_0 = e_0, \ e_1 e_1 = e_1, \ e_0 e_1 = 0.$$

Hence the algebra structure on $A_{\alpha D}$ decomposes,

$$A_{\alpha \mathcal{D}} = A_{\alpha \mathcal{D}} e_0 \times A_{\alpha \mathcal{D}} e_1.$$

2

Comultiplication similarly decouples,

$$\Delta(e_0) = (\alpha_1 - \alpha_0)e_0 \otimes e_0 \quad \Delta(e_1) = (\alpha_0 - \alpha_1)e_1 \otimes e_1.$$

э

Comultiplication similarly decouples,

$$\Delta(e_0) = (\alpha_1 - \alpha_0)e_0 \otimes e_0 \quad \Delta(e_1) = (\alpha_0 - \alpha_1)e_1 \otimes e_1.$$

Let $\mathcal{F}_{\alpha \mathcal{D}}$ denote the TQFT associated with $(R_{\alpha \mathcal{D}}, A_{\alpha \mathcal{D}})$.

э

Comultiplication similarly decouples,

$$\Delta(e_0) = (\alpha_1 - \alpha_0)e_0 \otimes e_0 \quad \Delta(e_1) = (\alpha_0 - \alpha_1)e_1 \otimes e_1.$$

Let $\mathcal{F}_{\alpha \mathcal{D}}$ denote the TQFT associated with $(R_{\alpha \mathcal{D}}, A_{\alpha \mathcal{D}})$.

The link homology determined by $\mathcal{F}_{\alpha \mathcal{D}}$ is essentially Lee's theory.

$$\{e_0,e_1\}\leftrightarrow\{\mathsf{a},\mathsf{b}\}$$

Comultiplication similarly decouples,

$$\Delta(e_0) = (\alpha_1 - \alpha_0)e_0 \otimes e_0 \quad \Delta(e_1) = (\alpha_0 - \alpha_1)e_1 \otimes e_1.$$

Let $\mathcal{F}_{\alpha \mathcal{D}}$ denote the TQFT associated with $(R_{\alpha \mathcal{D}}, A_{\alpha \mathcal{D}})$.

The link homology determined by $\mathcal{F}_{\alpha \mathcal{D}}$ is essentially Lee's theory.

 $\{e_0,e_1\}\leftrightarrow\{\mathsf{a},\mathsf{b}\}$

Proposition

Let L be an n component link with diagram D, and let $C_{\alpha D}(D)$ denote the chain complex obtained by applying $\mathcal{F}_{\alpha D}$ to the cube of resolutions. Then the homology of $C_{\alpha D}(D)$ is a free $R_{\alpha D}$ -module of rank 2^n .

< ロト < 同ト < ヨト < ヨト -

Comultiplication similarly decouples,

$$\Delta(e_0) = (\alpha_1 - \alpha_0)e_0 \otimes e_0 \quad \Delta(e_1) = (\alpha_0 - \alpha_1)e_1 \otimes e_1.$$

Let $\mathcal{F}_{\alpha \mathcal{D}}$ denote the TQFT associated with $(R_{\alpha \mathcal{D}}, A_{\alpha \mathcal{D}})$.

The link homology determined by $\mathcal{F}_{\alpha \mathcal{D}}$ is essentially Lee's theory.

 $\{e_0,e_1\}\leftrightarrow\{\mathsf{a},\mathsf{b}\}$

Proposition

Let L be an n component link with diagram D, and let $C_{\alpha D}(D)$ denote the chain complex obtained by applying $\mathcal{F}_{\alpha D}$ to the cube of resolutions. Then the homology of $C_{\alpha D}(D)$ is a free $R_{\alpha D}$ -module of rank 2^n .

Can be proven along the same lines as [BNM06, Weh08].

< ロト < 同ト < ヨト < ヨト -

3

• Asaeda-Przytycki-Sikora [APS04] defined a homology theory for links in interval bundles over surfaces.

э

- Asaeda-Przytycki-Sikora [APS04] defined a homology theory for links in interval bundles over surfaces.
- The special case of the thickened annulus is known as *annular Khovanov homology* or *annular APS homology*.

イロン イ団 とく ヨン イヨン

- Asaeda-Przytycki-Sikora [APS04] defined a homology theory for links in interval bundles over surfaces.
- The special case of the thickened annulus is known as *annular Khovanov homology* or *annular APS homology*.
- Let $\mathbb{A} := S^1 \times I$ denote the annulus.

э

< ロト < 同ト < ヨト < ヨト -

- Asaeda-Przytycki-Sikora [APS04] defined a homology theory for links in interval bundles over surfaces.
- The special case of the thickened annulus is known as *annular Khovanov homology* or *annular APS homology*.
- Let $\mathbb{A} := S^1 \times I$ denote the annulus.
- A link $L \subset \mathbb{A} \times I$ will be called an *annular link*.

< ロト < 同ト < ヨト < ヨト -

- Asaeda-Przytycki-Sikora [APS04] defined a homology theory for links in interval bundles over surfaces.
- The special case of the thickened annulus is known as *annular Khovanov homology* or *annular APS homology*.
- Let $\mathbb{A} := S^1 \times I$ denote the annulus.
- A link $L \subset \mathbb{A} \times I$ will be called an *annular link*.
- Its diagram D is obtained by projecting onto \mathbb{A} .

- Asaeda-Przytycki-Sikora [APS04] defined a homology theory for links in interval bundles over surfaces.
- The special case of the thickened annulus is known as *annular Khovanov homology* or *annular APS homology*.
- Let $\mathbb{A} := S^1 \times I$ denote the annulus.
- A link $L \subset \mathbb{A} \times I$ will be called an *annular link*.
- Its diagram D is obtained by projecting onto A.
- Form the cube of resolutions [[D]] as usual, with all smoothings drawn in A.

< ロト < 同ト < ヨト < ヨト -

- Asaeda-Przytycki-Sikora [APS04] defined a homology theory for links in interval bundles over surfaces.
- The special case of the thickened annulus is known as *annular Khovanov homology* or *annular APS homology*.
- Let $\mathbb{A} := S^1 \times I$ denote the annulus.
- A link $L \subset \mathbb{A} \times I$ will be called an *annular link*.
- Its diagram D is obtained by projecting onto A.
- Form the cube of resolutions [[D]] as usual, with all smoothings drawn in A.
- Apply the annular $TQFT \mathcal{G}$ to [[D]].

イロト 不得下 イヨト イヨト

- Asaeda-Przytycki-Sikora [APS04] defined a homology theory for links in interval bundles over surfaces.
- The special case of the thickened annulus is known as *annular Khovanov homology* or *annular APS homology*.
- Let $\mathbb{A} := S^1 \times I$ denote the annulus.
- A link $L \subset \mathbb{A} \times I$ will be called an *annular link*.
- Its diagram D is obtained by projecting onto \mathbb{A} .
- Form the cube of resolutions [[D]] as usual, with all smoothings drawn in A.
- Apply the annular $TQFT \mathcal{G}$ to [[D]].
- Annular homology is triply graded: in additional to homological and quantum grading, there is a third grading coming from winding around the annulus.

イロト 不得 トイヨト イヨト 二日

3

• Embed $\mathbb{A} \hookrightarrow \mathbb{R}^2 \setminus \{(0,0)\}$ standardly.

2

メロト メタト メヨト メヨト

• Embed $\mathbb{A} \hookrightarrow \mathbb{R}^2 \setminus \{(0,0)\}$ standardly.

• Annular link diagrams are disjoint from the puncture \times .

э

• Embed $\mathbb{A} \hookrightarrow \mathbb{R}^2 \setminus \{(0,0)\}$ standardly.

- Annular link diagrams are disjoint from the puncture \times .
- \bullet Represent \mathbbm{A} by simply indicating the puncture.

• Embed $\mathbb{A} \hookrightarrow \mathbb{R}^2 \setminus \{(0,0)\}$ standardly.

- \bullet Annular link diagrams are disjoint from the puncture $\times.$
- \bullet Represent \mathbbm{A} by simply indicating the puncture.

• Embed $\mathbb{A} \hookrightarrow \mathbb{R}^2 \setminus \{(0,0)\}$ standardly.

- \bullet Annular link diagrams are disjoint from the puncture $\times.$
- \bullet Represent \mathbbm{A} by simply indicating the puncture.

The annular TQFT ${\cal G}$

2
There are two types of circles in \mathbb{A} :

2

メロト メタト メヨト メヨト

There are two types of circles in \mathbb{A} :

Let $\mathscr{C} \subset \mathbb{A}$ be a collection of disjoint simple closed curves. Define $\mathcal{G}(\mathscr{C})$ as follows.

э

イロン イ団 とく ヨン イヨン

There are two types of circles in \mathbb{A} :

Let $\mathscr{C} \subset \mathbb{A}$ be a collection of disjoint simple closed curves. Define $\mathcal{G}(\mathscr{C})$ as follows.

• The underlying abelian group is just $\mathcal{F}(\mathscr{C}) = A_0^{\otimes |\mathscr{C}|}$

э

There are two types of circles in \mathbb{A} :

Let $\mathscr{C} \subset \mathbb{A}$ be a collection of disjoint simple closed curves. Define $\mathcal{G}(\mathscr{C})$ as follows.

- The underlying abelian group is just $\mathcal{F}(\mathscr{C}) = A_0^{\otimes |\mathscr{C}|}$
- Define the annular grading adeg on each tensor factor by setting

adeg(1) = adeg(X) = 0 for a trivial circle

There are two types of circles in \mathbb{A} :

Let $\mathscr{C} \subset \mathbb{A}$ be a collection of disjoint simple closed curves. Define $\mathcal{G}(\mathscr{C})$ as follows.

- The underlying abelian group is just $\mathcal{F}(\mathscr{C}) = A_0^{\otimes |\mathscr{C}|}$
- Define the annular grading adeg on each tensor factor by setting

adeg(1) = adeg(X) = 0 for a trivial circle

adeg(1) = -1, adeg(X) = 1 for an essential circle

<ロ> <回> <回> <回> < 回> < 回> < 回</p>

There are two types of circles in \mathbb{A} :

Let $\mathscr{C} \subset \mathbb{A}$ be a collection of disjoint simple closed curves. Define $\mathcal{G}(\mathscr{C})$ as follows.

- The underlying abelian group is just $\mathcal{F}(\mathscr{C}) = A_0^{\otimes |\mathscr{C}|}$
- Define the annular grading adeg on each tensor factor by setting

adeg(1) = adeg(X) = 0 for a trivial circle

adeg(1) = -1, adeg(X) = 1 for an essential circle

So $\mathcal{G}(\mathscr{C})$ is a bigraded free abelian group via (deg, adeg).

<ロ> <四> <四> <四> <三</p>

Defining \mathcal{G} on annular cobordisms:

イロト イタト イヨト イヨト 二日

Defining \mathcal{G} on annular cobordisms:

• Let $S \subset \mathbb{A} \times I$ be a cobordism from \mathscr{C}_1 to \mathscr{C}_2 .

2

メロト メタト メヨト メヨト

Defining \mathcal{G} on annular cobordisms:

- Let $S \subset \mathbb{A} \times I$ be a cobordism from \mathscr{C}_1 to \mathscr{C}_2 .
- View S as a surface in $\mathbb{R}^2 \times I$, and apply the Khovanov TQFT

 $\mathcal{F}(S): \mathcal{F}(\mathscr{C}_1) \to \mathcal{F}(\mathscr{C}_2).$

э

Defining \mathcal{G} on annular cobordisms:

- Let $S \subset \mathbb{A} \times I$ be a cobordism from \mathscr{C}_1 to \mathscr{C}_2 .
- View S as a surface in $\mathbb{R}^2 \times I$, and apply the Khovanov TQFT

 $\mathcal{F}(S): \mathcal{F}(\mathscr{C}_1) \to \mathcal{F}(\mathscr{C}_2).$

• Roberts [Rob13] observed that $\mathcal{F}(S)$ is non-decreasing with respect to the annular grading.

Defining \mathcal{G} on annular cobordisms:

- Let $S \subset \mathbb{A} \times I$ be a cobordism from \mathscr{C}_1 to \mathscr{C}_2 .
- View S as a surface in $\mathbb{R}^2 \times I$, and apply the Khovanov TQFT

$$\mathcal{F}(S): \mathcal{F}(\mathscr{C}_1) \to \mathcal{F}(\mathscr{C}_2).$$

- Roberts [Rob13] observed that $\mathcal{F}(S)$ is non-decreasing with respect to the annular grading.
- Let $\mathcal{F}(S)_0$ denote the adeg-preserving part of $\mathcal{F}(S)$, and set

$$\mathcal{G}(S) := \mathcal{F}(S)_0$$

Defining \mathcal{G} on annular cobordisms:

- Let $S \subset \mathbb{A} \times I$ be a cobordism from \mathscr{C}_1 to \mathscr{C}_2 .
- View S as a surface in $\mathbb{R}^2 \times I$, and apply the Khovanov TQFT

$$\mathcal{F}(S): \mathcal{F}(\mathscr{C}_1) \to \mathcal{F}(\mathscr{C}_2).$$

- Roberts [Rob13] observed that $\mathcal{F}(S)$ is non-decreasing with respect to the annular grading.
- Let $\mathcal{F}(S)_0$ denote the adeg-preserving part of $\mathcal{F}(S)$, and set

$$\mathcal{G}(S) := \mathcal{F}(S)_0$$

 \bullet In other words, ${\cal F}$ respects the adeg filtration, and ${\cal G}$ is the associated graded map.

3

We distinguish the module assigned to trivial and essential circles. For a circle $\mathcal{C} \subset \mathbb{A}$, write

$$\mathcal{G}(\mathcal{C}) = egin{cases} \mathcal{A}_0 & ext{if } \mathcal{C} ext{ is trivial} \ \mathcal{V} & ext{if } \mathcal{C} ext{ is essential} \end{cases}$$

э

We distinguish the module assigned to trivial and essential circles. For a circle $\mathcal{C}\subset\mathbb{A},$ write

$$\mathcal{G}(\mathcal{C}) = egin{cases} \mathcal{A}_0 & ext{if } \mathcal{C} ext{ is trivial} \ \mathcal{V} & ext{if } \mathcal{C} ext{ is essential} \end{cases}$$

If $\mathscr{C} \subset \mathbb{A}$ consists of *n* trivial and *m* essential circles, then

$$\mathcal{G}(\mathscr{C}) = A_0^{\otimes n} \otimes V^{\otimes m}.$$

э

We distinguish the module assigned to trivial and essential circles. For a circle $\mathcal{C}\subset\mathbb{A},$ write

$$\mathcal{G}(\mathcal{C}) = egin{cases} \mathcal{A}_0 & ext{if } \mathcal{C} ext{ is trivial} \ \mathcal{V} & ext{if } \mathcal{C} ext{ is essential} \end{cases}$$

If $\mathscr{C} \subset \mathbb{A}$ consists of *n* trivial and *m* essential circles, then

$$\mathcal{G}(\mathscr{C}) = A_0^{\otimes n} \otimes V^{\otimes m}.$$

For an essential circle, use the notation $v_-=1, v_+=X$

э

メロト メタト メヨト メヨト

We distinguish the module assigned to trivial and essential circles. For a circle $\mathcal{C}\subset\mathbb{A},$ write

$$\mathcal{G}(\mathcal{C}) = egin{cases} \mathcal{A}_0 & ext{if } \mathcal{C} ext{ is trivial} \ \mathcal{V} & ext{if } \mathcal{C} ext{ is essential} \end{cases}$$

If $\mathscr{C} \subset \mathbb{A}$ consists of *n* trivial and *m* essential circles, then

$$\mathcal{G}(\mathscr{C}) = A_0^{\otimes n} \otimes V^{\otimes m}$$

For an essential circle, use the notation $v_- = 1, v_+ = X$

Figure: Saddles involving essential circles

2

Figure: Saddles involving essential circles

Recall $v_{-} = 1$, $v_{+} = X$.

2

Figure: Saddles involving essential circles

Recall $v_- = 1$, $v_+ = X$.

$$V \otimes A_0 \xrightarrow{(a)} V$$
$$v_- \otimes 1 \mapsto v_-$$
$$v_+ \otimes 1 \mapsto v_+$$
$$v_- \otimes X \mapsto 0$$
$$v_+ \otimes X \mapsto 0$$

э

Figure: Saddles involving essential circles

Recall $v_- = 1$, $v_+ = X$.

$$V \otimes A_0 \xrightarrow{(a)} V$$
$$v_- \otimes 1 \mapsto v_-$$
$$v_+ \otimes 1 \mapsto v_+$$
$$v_- \otimes X \mapsto 0$$
$$v_+ \otimes X \mapsto 0$$

We see that X acts trivially on an essential circle.

Ross Akhmechet (University of Virginia)

э

3

The TQFT ${\mathcal G}$ factors through the following relation.

Figure: Boerner's relation

э

The TQFT ${\mathcal G}$ factors through the following relation.

Figure: Boerner's relation

Indeed, there are no nonzero endomorphisms of $V = \mathbb{Z}v_- \oplus \mathbb{Z}v_+$ of bidegree (2,0)

The TQFT ${\mathcal G}$ factors through the following relation.

Figure: Boerner's relation

Indeed, there are no nonzero endomorphisms of $V = \mathbb{Z}v_- \oplus \mathbb{Z}v_+$ of bidegree (2,0) This can't hold in the equivariant theories, since

$$X^2 - E_1 X + E_2 = 0$$

3

• Recall the U(2)-equivariant pair

$$R = \mathbb{Z}[E_1, E_2], \quad A = R[X]/(X^2 - E_1X + E_2)$$

 $\deg(E_1) = 2, \quad \deg(E_2) = 4$

2

• Recall the U(2)-equivariant pair

$$R = \mathbb{Z}[E_1, E_2], \quad A = R[X]/(X^2 - E_1X + E_2)$$

 $\deg(E_1) = 2, \quad \deg(E_2) = 4$

• Set $adeg(E_1) = adeg(E_2) = 0$.

э

• Recall the U(2)-equivariant pair

$$R = \mathbb{Z}[E_1, E_2], \quad A = R[X]/(X^2 - E_1X + E_2)$$

 $\deg(E_1) = 2, \quad \deg(E_2) = 4$

- Set $\operatorname{adeg}(E_1) = \operatorname{adeg}(E_2) = 0$.
- Suppose *M* is a bigraded, free, rank 2 *R*-module with basis m_- , m_+ in bidegrees (-1, -1) and (1, 1), respectively.

• Recall the U(2)-equivariant pair

$$R = \mathbb{Z}[E_1, E_2], \quad A = R[X]/(X^2 - E_1X + E_2)$$
$$\deg(E_1) = 2, \quad \deg(E_2) = 4$$

- Set $\operatorname{adeg}(E_1) = \operatorname{adeg}(E_2) = 0$.
- Suppose *M* is a bigraded, free, rank 2 *R*-module with basis m_- , m_+ in bidegrees (-1, -1) and (1, 1), respectively.
- Let $g: M \to M$ denote the map assigned to

• Recall the U(2)-equivariant pair

$$R = \mathbb{Z}[E_1, E_2], \quad A = R[X]/(X^2 - E_1X + E_2)$$
$$\deg(E_1) = 2, \quad \deg(E_2) = 4$$

- Set $\operatorname{adeg}(E_1) = \operatorname{adeg}(E_2) = 0$.
- Suppose M is a bigraded, free, rank 2 R-module with basis m_- , m_+ in bidegrees (-1, -1) and (1, 1), respectively.
- Let $g: M \to M$ denote the map assigned to

• Necessarily, $g(m_-) = nE_1m_-$ for some $n \in \mathbb{Z}$.

イロト 不得 トイヨト イヨト

• Recall the U(2)-equivariant pair

$$R = \mathbb{Z}[E_1, E_2], \quad A = R[X]/(X^2 - E_1X + E_2)$$
$$\deg(E_1) = 2, \quad \deg(E_2) = 4$$

- Set $\operatorname{adeg}(E_1) = \operatorname{adeg}(E_2) = 0$.
- Suppose *M* is a bigraded, free, rank 2 *R*-module with basis m_- , m_+ in bidegrees (-1, -1) and (1, 1), respectively.
- Let $g: M \to M$ denote the map assigned to

- Necessarily, $g(m_-) = nE_1m_-$ for some $n \in \mathbb{Z}$.
- However $g^2 E_1g + E_2$ id = 0

• Recall the U(2)-equivariant pair

$$R = \mathbb{Z}[E_1, E_2], \quad A = R[X]/(X^2 - E_1X + E_2)$$
$$\deg(E_1) = 2, \quad \deg(E_2) = 4$$

- Set $\operatorname{adeg}(E_1) = \operatorname{adeg}(E_2) = 0$.
- Suppose M is a bigraded, free, rank 2 R-module with basis m_- , m_+ in bidegrees (-1, -1) and (1, 1), respectively.
- Let $g: M \to M$ denote the map assigned to

- Necessarily, $g(m_-) = nE_1m_-$ for some $n \in \mathbb{Z}$.
- However $g^2 E_1g + E_2$ id = 0 $\Rightarrow n^2 E_1^2 nE_1^2 + E_2 = 0$.

The equivariant annular TQFT \mathcal{G}_{α}

Ross Akhmechet (University of Virginia)

2

The equivariant annular TQFT \mathcal{G}_{α}

• Recall the $U(1) \times U(1)$ -equivariant pair

$$R_{lpha} = \mathbb{Z}[lpha_0, lpha_1], \quad A_{lpha} = rac{R_{lpha}[X]}{((X - lpha_0)(X - lpha_1))}, \quad \deg(lpha_0) = \deg(lpha_1) = 2$$

э

The equivariant annular TQFT \mathcal{G}_{α}

• Recall the $U(1) \times U(1)$ -equivariant pair

$$R_{lpha} = \mathbb{Z}[lpha_0, lpha_1], \quad A_{lpha} = rac{R_{lpha}[X]}{((X - lpha_0)(X - lpha_1))}, \quad \deg(lpha_0) = \deg(lpha_1) = 2$$

• We define an annular TQFT \mathcal{G}_{α} taking values in \mathbb{Z}^2 -graded R_{α} -modules.

э
• Recall the U(1) imes U(1)-equivariant pair

$$R_{\alpha} = \mathbb{Z}[\alpha_0, \alpha_1], \quad A_{\alpha} = \frac{R_{\alpha}[X]}{((X - \alpha_0)(X - \alpha_1))}, \quad \deg(\alpha_0) = \deg(\alpha_1) = 2$$

- We define an annular TQFT \mathcal{G}_{α} taking values in \mathbb{Z}^2 -graded R_{α} -modules.
- \bullet Note that essential circles in $\mathbb A$ are naturally ordered from innermost to outermost

• Recall the U(1) imes U(1)-equivariant pair

$$R_{\alpha} = \mathbb{Z}[\alpha_0, \alpha_1], \quad A_{\alpha} = \frac{R_{\alpha}[X]}{((X - \alpha_0)(X - \alpha_1))}, \quad \deg(\alpha_0) = \deg(\alpha_1) = 2$$

- We define an annular TQFT \mathcal{G}_{α} taking values in \mathbb{Z}^2 -graded R_{α} -modules.
- \bullet Note that essential circles in $\mathbb A$ are naturally ordered from innermost to outermost

Ross Akhmechet (University of Virginia)

2

Let C ⊂ A be a collection of circles. As an R_α-module, set G_α(C) to simply be

$$\mathcal{G}_{lpha}(\mathscr{C}) = \mathcal{F}_{lpha}(\mathscr{C}).$$

э

Let C ⊂ A be a collection of circles. As an R_α-module, set G_α(C) to simply be

$$\mathcal{G}_{lpha}(\mathscr{C})=\mathcal{F}_{lpha}(\mathscr{C}).$$

We define an additional annular grading on $\mathcal{F}_{\alpha}(\mathscr{C}) = A_{\alpha}^{\otimes |\mathscr{C}|}$.

Let 𝒞 ⊂ 𝐴 be a collection of circles. As an R_α-module, set 𝒢_α(𝒞) to simply be

$$\mathcal{G}_{lpha}(\mathscr{C})=\mathcal{F}_{lpha}(\mathscr{C}).$$

We define an additional annular grading on $\mathcal{F}_{\alpha}(\mathscr{C}) = A_{\alpha}^{\otimes |\mathscr{C}|}$.

• Both $\{1, X - \alpha_0\}$ and $\{1, X - \alpha_1\}$ are homogeneous R_{α} -bases for A_{α} ,

$$\deg(1) = -1, \quad \deg(X - \alpha_0) = \deg(X - \alpha_1) = 1$$

Let C ⊂ A be a collection of circles. As an R_α-module, set G_α(C) to simply be

$$\mathcal{G}_{lpha}(\mathscr{C})=\mathcal{F}_{lpha}(\mathscr{C}).$$

We define an additional annular grading on $\mathcal{F}_{\alpha}(\mathscr{C}) = A_{\alpha}^{\otimes |\mathscr{C}|}$.

• Both $\{1, X - \alpha_0\}$ and $\{1, X - \alpha_1\}$ are homogeneous R_{α} -bases for A_{α} ,

$$\deg(1) = -1, \quad \deg(X - \alpha_0) = \deg(X - \alpha_1) = 1$$

Introduce notation

$$v_0 = 1,$$
 $v_1 = X - \alpha_0,$
 $v'_0 = 1,$ $v'_1 = X - \alpha_1,$

Let C ⊂ A be a collection of circles. As an R_α-module, set G_α(C) to simply be

$$\mathcal{G}_{lpha}(\mathscr{C})=\mathcal{F}_{lpha}(\mathscr{C}).$$

We define an additional annular grading on $\mathcal{F}_{\alpha}(\mathscr{C}) = A_{\alpha}^{\otimes |\mathscr{C}|}$.

• Both $\{1, X - \alpha_0\}$ and $\{1, X - \alpha_1\}$ are homogeneous R_{α} -bases for A_{α} ,

$$\deg(1) = -1, \quad \deg(X - \alpha_0) = \deg(X - \alpha_1) = 1$$

Introduce notation

$$v_0 = 1,$$
 $v_1 = X - \alpha_0,$
 $v'_0 = 1,$ $v'_1 = X - \alpha_1,$

With

$$\operatorname{adeg}(v_0) = \operatorname{adeg}(v'_0) = -1, \quad \operatorname{adeg}(v_1) = \operatorname{adeg}(v'_1) = 1.$$

Ross Akhmechet (University of Virginia)

2

 Every tensor factor A_α in F_α(C) corresponding to a trivial circle is concentrated in annular degree zero.

э

- Every tensor factor A_α in F_α(C) corresponding to a trivial circle is concentrated in annular degree zero.
- Factors corresponding to essential circles are assigned the (bi)homogeneous bases

$$\{v_0, v_1\} = \{1, X - \alpha_0\}$$
 or $\{v'_0, v'_1\} = \{1, X - \alpha_1\}$

in an alternating manner, depending on nesting.

- Every tensor factor A_α in F_α(C) corresponding to a trivial circle is concentrated in annular degree zero.
- Factors corresponding to essential circles are assigned the (bi)homogeneous bases

$$\{v_0, v_1\} = \{1, X - \alpha_0\}$$
 or $\{v'_0, v'_1\} = \{1, X - \alpha_1\}$

in an alternating manner, depending on nesting.

• Say, the first essential circle is assigned $\{v_0,v_1\},$ the second is assigned $\{v_0',v_1'\},$ etc.

Ross Akhmechet (University of Virginia)

2

Proposition

Let $S \subset \mathbb{A} \times I$ be a cobordism from C_1 to C_2 . Viewing S as a cobordism in $\mathbb{R}^2 \times I$, the map

 $\mathcal{F}_{lpha}(\mathcal{S}):\mathcal{G}_{lpha}(\mathscr{C}_1)
ightarrow\mathcal{G}_{lpha}(\mathscr{C}_2)$

does not decrease adeg.

イロン イヨン イヨン イヨン

Proposition

Let $S \subset \mathbb{A} \times I$ be a cobordism from C_1 to C_2 . Viewing S as a cobordism in $\mathbb{R}^2 \times I$, the map

 $\mathcal{F}_{lpha}(\mathcal{S}):\mathcal{G}_{lpha}(\mathscr{C}_1)
ightarrow\mathcal{G}_{lpha}(\mathscr{C}_2)$

does not decrease adeg.

• Define \mathcal{G}_{α} on annular cobordisms by setting

$$\mathcal{G}_{lpha}(S) := \mathcal{F}_{lpha}(S)_0$$

where $\mathcal{F}_{\alpha}(S)_0$ denotes the adeg-preserving part.

Proposition

Let $S \subset \mathbb{A} \times I$ be a cobordism from C_1 to C_2 . Viewing S as a cobordism in $\mathbb{R}^2 \times I$, the map

 $\mathcal{F}_{lpha}(\mathcal{S}):\mathcal{G}_{lpha}(\mathscr{C}_1)
ightarrow\mathcal{G}_{lpha}(\mathscr{C}_2)$

does not decrease adeg.

• Define \mathcal{G}_{α} on annular cobordisms by setting

$$\mathcal{G}_{lpha}(S) := \mathcal{F}_{lpha}(S)_{\mathsf{0}}$$

where $\mathcal{F}_{\alpha}(S)_0$ denotes the adeg-preserving part.

• Setting $\alpha_0 = \alpha_1 = 0$ recovers the (non-equivariant) annular TQFT \mathcal{G} .

イロト 不得下 イヨト イヨト

Proposition

Let $S \subset \mathbb{A} \times I$ be a cobordism from C_1 to C_2 . Viewing S as a cobordism in $\mathbb{R}^2 \times I$, the map

 $\mathcal{F}_{lpha}(\mathcal{S}):\mathcal{G}_{lpha}(\mathscr{C}_1)
ightarrow\mathcal{G}_{lpha}(\mathscr{C}_2)$

does not decrease adeg.

• Define \mathcal{G}_{α} on annular cobordisms by setting

$$\mathcal{G}_{lpha}(S) := \mathcal{F}_{lpha}(S)_{\mathsf{0}}$$

where $\mathcal{F}_{\alpha}(S)_0$ denotes the adeg-preserving part.

- Setting $\alpha_0 = \alpha_1 = 0$ recovers the (non-equivariant) annular TQFT \mathcal{G} .
- Can set, say α₀ = 0 and rename α₁ to α₁ = h to get an annular version of Bar-Natan homology.

イロト 不得 トイヨト イヨト 二日

Ross Akhmechet (University of Virginia)

2

Key example: Let S denote

э

Key example: Let S denote

Recall $v_0 = 1$, $v_1 = X - \alpha_0$.

э

Key example: Let S denote

Recall $v_0 = 1$, $v_1 = X - \alpha_0$.

 $\mathcal{F}_{\alpha}(S)(v_0)$

э

イロン イ団 とく ヨン イヨン

Key example: Let S denote

Recall $v_0 = 1$, $v_1 = X - \alpha_0$.

 $\mathcal{F}_{\alpha}(S)(v_0) = X$

э

Key example: Let S denote

Recall $v_0 = 1$, $v_1 = X - \alpha_0$.

$$\mathcal{F}_{\alpha}(S)(v_0) = X = X - \alpha_0 + \alpha_0$$

э

Key example: Let S denote

Recall $v_0 = 1$, $v_1 = X - \alpha_0$.

$$\mathcal{F}_{\alpha}(S)(v_0) = X = X - \alpha_0 + \alpha_0 = v_1 + \alpha_0 v_0$$

э

Key example: Let S denote

Recall $v_0 = 1$, $v_1 = X - \alpha_0$.

$$\mathcal{F}_{\alpha}(S)(v_0) = X = X - \alpha_0 + \alpha_0 = \boxed{v_1} + \alpha_0 v_0$$
$$\mathcal{F}_{\alpha}(S)(v_1) = \alpha_1 v_1$$

э

Key example: Let S denote

Recall $v_0 = 1$, $v_1 = X - \alpha_0$.

$$\mathcal{F}_{lpha}(S)(v_0) = X = X - lpha_0 + lpha_0 = \boxed{v_1} + lpha_0 v_0$$

 $\mathcal{F}_{lpha}(S)(v_1) = lpha_1 v_1$
Then the map $\mathcal{G}_{lpha}(S)$ assigned to S is

$$\mathcal{G}_{lpha}(S)(v_0) = lpha_0 v_0$$

 $\mathcal{G}_{lpha}(S)(v_1) = lpha_1 v_1$

э

イロン イ団 とく ヨン イヨン

Ross Akhmechet (University of Virginia)

メロトメ 日本 メヨトメヨト 三日

More generally: let S denote the following cobordism

Figure: Product cobordism with the *i*-th component dotted

э

More generally: let S denote the following cobordism

Figure: Product cobordism with the *i*-th component dotted

Then $\mathcal{G}_{\alpha}(S)$ is the identity on all tensor factors except the *i*-th, where it acts via

$$i \text{ odd} \qquad i \text{ even}$$

$$v_0 \mapsto \alpha_0 v_0 \qquad v'_0 \mapsto \alpha_1 v'_0$$

$$v_1 \mapsto \alpha_1 v_1 \qquad v'_1 \mapsto \alpha_0 v'_1$$

э

イロン イ団 とく ヨン イヨン

Ross Akhmechet (University of Virginia)

2

Consider the cobordism

2

Consider the cobordism

$$egin{aligned} & v_0 = 1, & v_1 = X - lpha_0, \ & v_0' = 1, & v_1' = X - lpha_1, \end{aligned}$$

2

Consider the cobordism

$$egin{aligned} & v_0 = 1, & v_1 = X - lpha_0, \ & v_0' = 1, & v_1' = X - lpha_1, \end{aligned}$$

$$\begin{array}{c} v_0 \otimes v'_0 \mapsto \boxed{1} \\ v_1 \otimes v'_0 \mapsto X - \alpha_0 \\ v_0 \otimes v'_1 \mapsto X - \alpha_1 \\ v_1 \otimes v'_1 \mapsto 0 \end{array}$$

Ross Akhmechet (University of Virginia)

2

Consider the cobordism

$$v_0 = 1,$$
 $v_1 = X - \alpha_0,$
 $v'_0 = 1,$ $v'_1 = X - \alpha_1,$

$$\begin{array}{c} \mathsf{v}_0 \otimes \mathsf{v}_0' \mapsto \boxed{1} \\ \mathsf{v}_1 \otimes \mathsf{v}_0' \mapsto X - \alpha_0 \\ \mathsf{v}_0 \otimes \mathsf{v}_1' \mapsto X - \alpha_1 \\ \mathsf{v}_1 \otimes \mathsf{v}_1' \mapsto 0 \end{array}$$

Note that such a merge is always between consecutive essential circles.

Ross Akhmechet (University of Virginia)

э

Some remarks

イロト イポト イヨト イヨト 二日

Some remarks

• Maps assigned to cobordisms by \mathcal{G}_{α} can be "guessed".

3
- Maps assigned to cobordisms by \mathcal{G}_{α} can be "guessed".
- Again, let S denote

э

- Maps assigned to cobordisms by \mathcal{G}_{α} can be "guessed".
- Again, let S denote

• Let *M* be a bigraded, free, rank 2 R_{α} -module with basis m_{-}, m_{+} in bidegrees (-1, -1) and (1, 1), respectively.

- Maps assigned to cobordisms by \mathcal{G}_{α} can be "guessed".
- Again, let S denote

- Let *M* be a bigraded, free, rank 2 R_{α} -module with basis m_{-}, m_{+} in bidegrees (-1, -1) and (1, 1), respectively.
- Bidegree considerations and the relation X² (α₀ + α₁)X + α₀α₁ in A_α give conditions on what the map assigned to S can be.

- Maps assigned to cobordisms by \mathcal{G}_{α} can be "guessed".
- Again, let S denote

- Let *M* be a bigraded, free, rank 2 R_{α} -module with basis m_{-}, m_{+} in bidegrees (-1, -1) and (1, 1), respectively.
- Bidegree considerations and the relation X² (α₀ + α₁)X + α₀α₁ in A_α give conditions on what the map assigned to S can be.
- The alternating nature can be determined by considering the cobordism

イロン イ団 とく ヨン イヨン

- Maps assigned to cobordisms by \mathcal{G}_{α} can be "guessed".
- Again, let S denote

- Let *M* be a bigraded, free, rank 2 R_{α} -module with basis m_{-}, m_{+} in bidegrees (-1, -1) and (1, 1), respectively.
- Bidegree considerations and the relation $X^2 (\alpha_0 + \alpha_1)X + \alpha_0\alpha_1$ in A_{α} give conditions on what the map assigned to S can be.
- The alternating nature can be determined by considering the cobordism

• Grigsby-Licata-Wehrli [GLW18] showed that the annular chain complex carries an action of *sl*(2).

- Maps assigned to cobordisms by \mathcal{G}_{α} can be "guessed".
- Again, let S denote

- Let *M* be a bigraded, free, rank 2 R_{α} -module with basis m_{-}, m_{+} in bidegrees (-1, -1) and (1, 1), respectively.
- Bidegree considerations and the relation X² (α₀ + α₁)X + α₀α₁ in A_α give conditions on what the map assigned to S can be.
- The alternating nature can be determined by considering the cobordism

- Grigsby-Licata-Wehrli [GLW18] showed that the annular chain complex carries an action of *sl*(2).
- This action also depends on parity of nesting.

2

$$\mathcal{D} = (\alpha_0 - \alpha_1)^2, \quad R_{\alpha \mathcal{D}} = R_{\alpha} [\mathcal{D}^{-1}], \quad A_{\alpha \mathcal{D}} = A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}}.$$

2

$$\mathcal{D} = (\alpha_0 - \alpha_1)^2, \quad R_{\alpha \mathcal{D}} = R_{\alpha} [\mathcal{D}^{-1}], \quad A_{\alpha \mathcal{D}} = A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}},$$
$$e_0 := \frac{X - \alpha_0}{\alpha_1 - \alpha_0}, \quad e_1 := \frac{X - \alpha_1}{\alpha_0 - \alpha_1}, \quad e_i e_j = \delta_{ij} e_i$$

2

$$\mathcal{D} = (\alpha_0 - \alpha_1)^2, \quad R_{\alpha \mathcal{D}} = R_{\alpha} [\mathcal{D}^{-1}], \quad A_{\alpha \mathcal{D}} = A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}}.$$

$$e_0 := \frac{X - \alpha_0}{\alpha_1 - \alpha_0}, \quad e_1 := \frac{X - \alpha_1}{\alpha_0 - \alpha_1}, \quad e_i e_j = \delta_{ij} e_i$$

Let $\mathcal{G}_{\alpha \mathcal{D}} = \mathcal{G}_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}}$ denote the annular TQFT obtained by extending scalars to $R_{\alpha \mathcal{D}}$.

イロト イロト イモト イモト 一日

$$\mathcal{D} = (\alpha_0 - \alpha_1)^2, \quad R_{\alpha \mathcal{D}} = R_{\alpha} [\mathcal{D}^{-1}], \quad A_{\alpha \mathcal{D}} = A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}}.$$

$$e_0 := \frac{X - \alpha_0}{\alpha_1 - \alpha_0}, \quad e_1 := \frac{X - \alpha_1}{\alpha_0 - \alpha_1}, \quad e_i e_j = \delta_{ij} e_i$$

Let $\mathcal{G}_{\alpha \mathcal{D}} = \mathcal{G}_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}}$ denote the annular TQFT obtained by extending scalars to $R_{\alpha \mathcal{D}}$.

Theorem (A.)

Let $L \subset \mathbb{A} \times I$ be an n-component annular link with diagram D. Let $C^{\mathbb{A}}_{\alpha \mathcal{D}}(D)$ denote the chain complex obtained by applying $\mathcal{G}_{\alpha \mathcal{D}}$ to the cube of resolutions. Then the homology of $C^{\mathbb{A}}_{\alpha \mathcal{D}}(D)$ is a free $R_{\alpha \mathcal{D}}$ -module of rank 2^n .

$$\mathcal{D} = (\alpha_0 - \alpha_1)^2, \quad R_{\alpha \mathcal{D}} = R_{\alpha} [\mathcal{D}^{-1}], \quad A_{\alpha \mathcal{D}} = A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}}.$$

$$e_0 := \frac{X - \alpha_0}{\alpha_1 - \alpha_0}, \quad e_1 := \frac{X - \alpha_1}{\alpha_0 - \alpha_1}, \quad e_i e_j = \delta_{ij} e_i$$

Let $\mathcal{G}_{\alpha \mathcal{D}} = \mathcal{G}_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}}$ denote the annular TQFT obtained by extending scalars to $R_{\alpha \mathcal{D}}$.

Theorem (A.)

Let $L \subset \mathbb{A} \times I$ be an n-component annular link with diagram D. Let $C^{\mathbb{A}}_{\alpha \mathcal{D}}(D)$ denote the chain complex obtained by applying $\mathcal{G}_{\alpha \mathcal{D}}$ to the cube of resolutions. Then the homology of $C^{\mathbb{A}}_{\alpha \mathcal{D}}(D)$ is a free $R_{\alpha \mathcal{D}}$ -module of rank 2^n .

Proof: Consider the following elements of $A_{\alpha D}$,

$$\overline{v}_0 := v_0 = 1, \qquad \overline{v}_1 := \frac{v_1}{\alpha_1 - \alpha_0} = \frac{X - \alpha_0}{\alpha_1 - \alpha_0},$$

$$\overline{v}'_0 := v'_0 = 1, \qquad \overline{v}'_1 := \frac{v'_1}{\alpha_0 - \alpha_1} = \frac{X - \alpha_1}{\alpha_0 - \alpha_1}.$$

2

メロト メロト メヨト メヨト

• From (a), we see that \overline{v}_0 acts as e_1 and \overline{v}_1 acts as e_0 .

- From (a), we see that \overline{v}_0 acts as e_1 and \overline{v}_1 acts as e_0 .
- From (b), $\overline{\nu}'_0$ acts as e_0 and $\overline{\nu}'_1$ acts as e_1 .

2

メロト メロト メヨト メヨト

Thank you!

2

・ロト ・回 ト ・ヨト ・ヨト

Marta M. Asaeda, Józef H. Przytycki, and Adam S. Sikora. Categorification of the Kauffman bracket skein module of *I*-bundles over surfaces.

Algebr. Geom. Topol., 4:1177-1210, 2004.

Dror Bar-Natan and Scott Morrison.

The Karoubi envelope and Lee's degeneration of Khovanov homology. *Algebr. Geom. Topol.*, 6:1459–1469, 2006.

J. Elisenda Grigsby, Anthony M. Licata, and Stephan M. Wehrli. Annular Khovanov homology and knotted Schur-Weyl representations. *Compos. Math.*, 154(3):459–502, 2018.

Mikhail Khovanov.

Link homology and Frobenius extensions. *Fund. Math.*, 190:179–190, 2006.

Mikhail Khovanov and Louis-Hadrien Robert. Link homology and Frobenius extensions II. 2020.

Preprint: arXiv:2005.08048.

Lawrence P. Roberts.

On knot Floer homology in double branched covers , converse , con

Geom. Topol., 17(1):413-467, 2013.

S. Wehrli.

A spanning tree model for Khovanov homology.

J. Knot Theory Ramifications, 17(12):1561–1574, 2008.

э