Equivariant annular Khovanov homology

Ross Akhmechet
University of Virginia

Outline

Outline

1. Equivariant link homology

Outline

1. Equivariant link homology

2. Annular Khovanov homology

Outline

1. Equivariant link homology
2. Annular Khovanov homology
3. Building an equivariant annular theory

Outline

1. Equivariant link homology
2. Annular Khovanov homology
3. Building an equivariant annular theory
4. Properties

Three TQFTs

Three TQFTs

- We'll review three Frobenius algebras and their corresponding TQFT.
[Kho06] M. Khovanov, Link homology and Frobenius extensions. arXiv:math/0411447 [KR20] M. Khovanov and L.-H. Robert. Link homology and Frobenius extensions II. arXiv:2005.08048

Three TQFTs

- We'll review three Frobenius algebras and their corresponding TQFT.

1. $\left(R_{0}, A_{0}\right)$ Khovanov homology
[Kho06] M. Khovanov, Link homology and Frobenius extensions. arXiv:math/0411447 [KR20] M. Khovanov and L.-H. Robert. Link homology and Frobenius extensions II. arXiv:2005.08048

Three TQFTs

- We'll review three Frobenius algebras and their corresponding TQFT.

1. $\left(R_{0}, A_{0}\right) \quad$ Khovanov homology
2. $(R, A) \quad U(2)$-equivariant (also called universal)
[Kho06] M. Khovanov, Link homology and Frobenius extensions. arXiv:math/0411447 [KR20] M. Khovanov and L.-H. Robert. Link homology and Frobenius extensions II. arXiv:2005.08048

Three TQFTs

- We'll review three Frobenius algebras and their corresponding TQFT.

1. $\left(R_{0}, A_{0}\right) \quad$ Khovanov homology
2. $(R, A) \quad U(2)$-equivariant (also called universal)
3. $\left(R_{\alpha}, A_{\alpha}\right) \quad U(1) \times U(1)$-equivariant
[Kho06] M. Khovanov, Link homology and Frobenius extensions. arXiv:math/0411447 [KR20] M. Khovanov and L.-H. Robert. Link homology and Frobenius extensions II. arXiv:2005.08048

Three TQFTs

- We'll review three Frobenius algebras and their corresponding TQFT.

1. $\left(R_{0}, A_{0}\right)$ Khovanov homology
2. $(R, A) \quad U(2)$-equivariant (also called universal)
3. $\left(R_{\alpha}, A_{\alpha}\right) \quad U(1) \times U(1)$-equivariant

- Each of these TQFTs takes values in the category of graded R_{\star}-modules.
[Kho06] M. Khovanov, Link homology and Frobenius extensions. arXiv:math/0411447 [KR20] M. Khovanov and L.-H. Robert. Link homology and Frobenius extensions II. arXiv:2005.08048

Three TQFTs

- We'll review three Frobenius algebras and their corresponding TQFT.

1. $\left(R_{0}, A_{0}\right)$ Khovanov homology
2. $(R, A) \quad U(2)$-equivariant (also called universal)
3. $\left(R_{\alpha}, A_{\alpha}\right) \quad U(1) \times U(1)$-equivariant

- Each of these TQFTs takes values in the category of graded R_{\star}-modules.
- For a link diagram D, let [[D]] denote the cube of resolutions / Bar-Natan complex.
[Kho06] M. Khovanov, Link homology and Frobenius extensions. arXiv:math/0411447 [KR20] M. Khovanov and L.-H. Robert. Link homology and Frobenius extensions II. arXiv:2005.08048

Three TQFTs

- We'll review three Frobenius algebras and their corresponding TQFT.

1. $\left(R_{0}, A_{0}\right)$ Khovanov homology
2. $(R, A) \quad U(2)$-equivariant (also called universal)
3. $\left(R_{\alpha}, A_{\alpha}\right) \quad U(1) \times U(1)$-equivariant

- Each of these TQFTs takes values in the category of graded R_{\star}-modules.
- For a link diagram D, let [[D]] denote the cube of resolutions / Bar-Natan complex.
- Applying each TQFT to [[D]] yields link homology.

Three TQFTs

- We'll review three Frobenius algebras and their corresponding TQFT.

1. $\left(R_{0}, A_{0}\right) \quad$ Khovanov homology
2. $(R, A) \quad U(2)$-equivariant (also called universal)
3. $\left(R_{\alpha}, A_{\alpha}\right) \quad U(1) \times U(1)$-equivariant

- Each of these TQFTs takes values in the category of graded R_{\star}-modules.
- For a link diagram D, let [[D]] denote the cube of resolutions / Bar-Natan complex.
- Applying each TQFT to [[D]] yields link homology.
- They can be extended to cobordisms with dots.
[Kho06] M. Khovanov, Link homology and Frobenius extensions. arXiv:math/0411447 [KR20] M. Khovanov and L.-H. Robert. Link homology and Frobenius extensions II. arXiv:2005.08048

Three TQFTs

- We'll review three Frobenius algebras and their corresponding TQFT.

1. $\left(R_{0}, A_{0}\right)$ Khovanov homology
2. $(R, A) \quad U(2)$-equivariant (also called universal)
3. $\left(R_{\alpha}, A_{\alpha}\right) \quad U(1) \times U(1)$-equivariant

- Each of these TQFTs takes values in the category of graded R_{\star}-modules.
- For a link diagram D, let $[[D]]$ denote the cube of resolutions / Bar-Natan complex.
- Applying each TQFT to [[D]] yields link homology.
- They can be extended to cobordisms with dots.
- For a cobordism S with d dots, its associated map has degree

$$
-\chi(S)+2 d
$$

[Kho06] M. Khovanov, Link homology and Frobenius extensions. arXiv:math/0411447 [KR20] M. Khovanov and L.-H. Robert. Link homology and Frobenius extensions II. arXiv:2005.08048
$\left(R_{0}, A_{0}\right)$

$\left(R_{0}, A_{0}\right)$

- $R_{0}=\mathbb{Z}, A_{0}=\mathbb{Z}[X] /\left(X^{2}\right)$

$\left(R_{0}, A_{0}\right)$

- $R_{0}=\mathbb{Z}, A_{0}=\mathbb{Z}[X] /\left(X^{2}\right)$

$$
\begin{aligned}
\Delta(1) & =1 \otimes X+X \otimes 1 \\
\Delta(X) & =X \otimes X
\end{aligned}
$$

$\left(R_{0}, A_{0}\right)$

- $R_{0}=\mathbb{Z}, A_{0}=\mathbb{Z}[X] /\left(X^{2}\right)$

$$
\begin{aligned}
\Delta(1) & =1 \otimes X+X \otimes 1 \\
\Delta(X) & =X \otimes X
\end{aligned}
$$

- A_{0} is a free R_{0}-module with basis $1, X$. Set

$$
\operatorname{deg}(1)=-1 \quad \operatorname{deg}(X)=1
$$

$\left(R_{0}, A_{0}\right)$

- $R_{0}=\mathbb{Z}, A_{0}=\mathbb{Z}[X] /\left(X^{2}\right)$

$$
\begin{aligned}
\Delta(1) & =1 \otimes X+X \otimes 1 \\
\Delta(X) & =X \otimes X
\end{aligned}
$$

- A_{0} is a free R_{0}-module with basis $1, X$. Set

$$
\operatorname{deg}(1)=-1 \quad \operatorname{deg}(X)=1
$$

- Let \mathcal{F} denote the corresponding $(1+1)$-dimensional TQFT.

$\left(R_{0}, A_{0}\right)$

- $R_{0}=\mathbb{Z}, A_{0}=\mathbb{Z}[X] /\left(X^{2}\right)$

$$
\begin{aligned}
\Delta(1) & =1 \otimes X+X \otimes 1 \\
\Delta(X) & =X \otimes X
\end{aligned}
$$

- A_{0} is a free R_{0}-module with basis $1, X$. Set

$$
\operatorname{deg}(1)=-1 \quad \operatorname{deg}(X)=1
$$

- Let \mathcal{F} denote the corresponding $(1+1)$-dimensional TQFT.
- The Khovanov chain complex is obtained by applying \mathcal{F} to the cube of resolutions [[D]].

$\left(R_{0}, A_{0}\right)$

- $R_{0}=\mathbb{Z}, A_{0}=\mathbb{Z}[X] /\left(X^{2}\right)$

$$
\begin{aligned}
\Delta(1) & =1 \otimes X+X \otimes 1 \\
\Delta(X) & =X \otimes X
\end{aligned}
$$

- A_{0} is a free R_{0}-module with basis $1, X$. Set

$$
\operatorname{deg}(1)=-1 \quad \operatorname{deg}(X)=1
$$

- Let \mathcal{F} denote the corresponding $(1+1)$-dimensional TQFT.
- The Khovanov chain complex is obtained by applying \mathcal{F} to the cube of resolutions [[D]].
- Extend \mathcal{F} to surfaces with dots by interpreting a dot • as multiplication by $X \in A_{0}$.

(R, A)

(R, A)

- $R=\mathbb{Z}\left[E_{1}, E_{2}\right], A=R[X] /\left(X^{2}-E_{1} X+E_{2}\right)$
- $R=\mathbb{Z}\left[E_{1}, E_{2}\right], A=R[X] /\left(X^{2}-E_{1} X+E_{2}\right)$

$$
\begin{aligned}
\Delta(1) & =1 \otimes X+X \otimes 1-E_{1} 1 \otimes 1 \\
\Delta(X) & =X \otimes X-E_{2} 1 \otimes 1
\end{aligned}
$$

- $R=\mathbb{Z}\left[E_{1}, E_{2}\right], A=R[X] /\left(X^{2}-E_{1} X+E_{2}\right)$

$$
\begin{aligned}
\Delta(1) & =1 \otimes X+X \otimes 1-E_{1} 1 \otimes 1 \\
\Delta(X) & =X \otimes X-E_{2} 1 \otimes 1
\end{aligned}
$$

- Set $\operatorname{deg}\left(E_{1}\right)=2, \operatorname{deg}\left(E_{2}\right)=4$.
- $R=\mathbb{Z}\left[E_{1}, E_{2}\right], A=R[X] /\left(X^{2}-E_{1} X+E_{2}\right)$

$$
\begin{aligned}
\Delta(1) & =1 \otimes X+X \otimes 1-E_{1} 1 \otimes 1 \\
\Delta(X) & =X \otimes X-E_{2} 1 \otimes 1
\end{aligned}
$$

- Set $\operatorname{deg}\left(E_{1}\right)=2, \operatorname{deg}\left(E_{2}\right)=4$.
- As before, set $\operatorname{deg}(1)=-1, \operatorname{deg}(X)=1$
- $R=\mathbb{Z}\left[E_{1}, E_{2}\right], A=R[X] /\left(X^{2}-E_{1} X+E_{2}\right)$

$$
\begin{aligned}
\Delta(1) & =1 \otimes X+X \otimes 1-E_{1} 1 \otimes 1 \\
\Delta(X) & =X \otimes X-E_{2} 1 \otimes 1
\end{aligned}
$$

- Set $\operatorname{deg}\left(E_{1}\right)=2, \operatorname{deg}\left(E_{2}\right)=4$.
- As before, set $\operatorname{deg}(1)=-1, \operatorname{deg}(X)=1$
- Common notation: $E_{1}=h, E_{2}=-t$.

(R, A)

- $R=\mathbb{Z}\left[E_{1}, E_{2}\right], A=R[X] /\left(X^{2}-E_{1} X+E_{2}\right)$

$$
\begin{aligned}
\Delta(1) & =1 \otimes X+X \otimes 1-E_{1} 1 \otimes 1 \\
\Delta(X) & =X \otimes X-E_{2} 1 \otimes 1
\end{aligned}
$$

- Set $\operatorname{deg}\left(E_{1}\right)=2, \operatorname{deg}\left(E_{2}\right)=4$.
- As before, set $\operatorname{deg}(1)=-1, \operatorname{deg}(X)=1$
- Common notation: $E_{1}=h, E_{2}=-t$.
- R and A are the $U(2)$-equivariant cohomology of a point and of $\mathbb{C P}^{1}$, respectively.

$\left(R_{\alpha}, A_{\alpha}\right)$

$\left(R_{\alpha}, A_{\alpha}\right)$

- $R_{\alpha}=\mathbb{Z}\left[\alpha_{0}, \alpha_{1}\right], A_{\alpha}=R_{\alpha}[X] /\left(\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)\right)$.

$\left(R_{\alpha}, A_{\alpha}\right)$

- $R_{\alpha}=\mathbb{Z}\left[\alpha_{0}, \alpha_{1}\right], A_{\alpha}=R_{\alpha}[X] /\left(\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)\right)$.

$$
\begin{aligned}
\Delta(1) & =\left(X-\alpha_{0}\right) \otimes 1+1 \otimes\left(X-\alpha_{1}\right) \\
\Delta(X) & =X \otimes X-\alpha_{0} \alpha_{1} 1 \otimes 1 .
\end{aligned}
$$

$\left(R_{\alpha}, A_{\alpha}\right)$

- $R_{\alpha}=\mathbb{Z}\left[\alpha_{0}, \alpha_{1}\right], A_{\alpha}=R_{\alpha}[X] /\left(\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)\right)$.

$$
\begin{aligned}
\Delta(1) & =\left(X-\alpha_{0}\right) \otimes 1+1 \otimes\left(X-\alpha_{1}\right) \\
\Delta(X) & =X \otimes X-\alpha_{0} \alpha_{1} 1 \otimes 1 .
\end{aligned}
$$

- Set $\operatorname{deg}\left(\alpha_{0}\right)=\operatorname{deg}\left(\alpha_{1}\right)=2$.

$\left(R_{\alpha}, A_{\alpha}\right)$

- $R_{\alpha}=\mathbb{Z}\left[\alpha_{0}, \alpha_{1}\right], A_{\alpha}=R_{\alpha}[X] /\left(\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)\right)$.

$$
\begin{aligned}
\Delta(1) & =\left(X-\alpha_{0}\right) \otimes 1+1 \otimes\left(X-\alpha_{1}\right) \\
\Delta(X) & =X \otimes X-\alpha_{0} \alpha_{1} 1 \otimes 1 .
\end{aligned}
$$

- Set $\operatorname{deg}\left(\alpha_{0}\right)=\operatorname{deg}\left(\alpha_{1}\right)=2$.
- $\operatorname{Set} \operatorname{deg}(1)=-1, \operatorname{deg}(X)=1$.

$\left(R_{\alpha}, A_{\alpha}\right)$

- $R_{\alpha}=\mathbb{Z}\left[\alpha_{0}, \alpha_{1}\right], A_{\alpha}=R_{\alpha}[X] /\left(\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)\right)$.

$$
\begin{aligned}
\Delta(1) & =\left(X-\alpha_{0}\right) \otimes 1+1 \otimes\left(X-\alpha_{1}\right) \\
\Delta(X) & =X \otimes X-\alpha_{0} \alpha_{1} 1 \otimes 1 .
\end{aligned}
$$

- Set $\operatorname{deg}\left(\alpha_{0}\right)=\operatorname{deg}\left(\alpha_{1}\right)=2$.
- Set $\operatorname{deg}(1)=-1, \operatorname{deg}(X)=1$.
- Let \mathcal{F}_{α} denote the corresponding TQFT.

$\left(R_{\alpha}, A_{\alpha}\right)$

- $R_{\alpha}=\mathbb{Z}\left[\alpha_{0}, \alpha_{1}\right], A_{\alpha}=R_{\alpha}[X] /\left(\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)\right)$.

$$
\begin{aligned}
\Delta(1) & =\left(X-\alpha_{0}\right) \otimes 1+1 \otimes\left(X-\alpha_{1}\right) \\
\Delta(X) & =X \otimes X-\alpha_{0} \alpha_{1} 1 \otimes 1 .
\end{aligned}
$$

- Set $\operatorname{deg}\left(\alpha_{0}\right)=\operatorname{deg}\left(\alpha_{1}\right)=2$.
- Set $\operatorname{deg}(1)=-1, \operatorname{deg}(X)=1$.
- Let \mathcal{F}_{α} denote the corresponding TQFT.
- R_{α} and A_{α} are the $U(1) \times U(1)$-equivariant cohomology of a point and of $\mathbb{C P}^{1}$, respectively [KR20].

$\left(R_{\alpha}, A_{\alpha}\right)$

- $R_{\alpha}=\mathbb{Z}\left[\alpha_{0}, \alpha_{1}\right], A_{\alpha}=R_{\alpha}[X] /\left(\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)\right)$.

$$
\begin{aligned}
\Delta(1) & =\left(X-\alpha_{0}\right) \otimes 1+1 \otimes\left(X-\alpha_{1}\right) \\
\Delta(X) & =X \otimes X-\alpha_{0} \alpha_{1} 1 \otimes 1 .
\end{aligned}
$$

- Set $\operatorname{deg}\left(\alpha_{0}\right)=\operatorname{deg}\left(\alpha_{1}\right)=2$.
- Set $\operatorname{deg}(1)=-1, \operatorname{deg}(X)=1$.
- Let \mathcal{F}_{α} denote the corresponding TQFT.
- R_{α} and A_{α} are the $U(1) \times U(1)$-equivariant cohomology of a point and of $\mathbb{C P}^{1}$, respectively [KR20].
- The extensions $(R, A),\left(R_{\alpha}, A_{\alpha}\right)$, and others were studied by Khovanov-Robert [KR20].

Relations among the theories

Relations among the theories

$$
\begin{array}{rll}
R_{0}=\mathbb{Z} & R=\mathbb{Z}\left[E_{1}, E_{2}\right] & R_{\alpha}=\mathbb{Z}\left[\alpha_{0}, \alpha_{1}\right] \\
A_{0}=\frac{R_{0}[X]}{\left(X^{2}\right)} & A=\frac{R[X]}{\left(X^{2}-E_{1} X+E_{2}\right)} & A_{\alpha}=\frac{R_{\alpha}[X]}{\left(\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)\right)} \\
\mathcal{F} & & \mathcal{F}_{\alpha}
\end{array}
$$

Relations among the theories

$$
\begin{array}{rll}
R_{0}=\mathbb{Z} & R=\mathbb{Z}\left[E_{1}, E_{2}\right] & R_{\alpha}=\mathbb{Z}\left[\alpha_{0}, \alpha_{1}\right] \\
A_{0} & =\frac{R_{0}[X]}{\left(X^{2}\right)} & A=\frac{R[X]}{\left(X^{2}-E_{1} X+E_{2}\right)}
\end{array} A_{\alpha}=\frac{R_{\alpha}[X]}{\left(\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)\right)}
$$

- Both (R, A) and $\left(R_{\alpha}, A_{\alpha}\right)$ specialize to $\left(R_{0}, A_{0}\right)$.

Relations among the theories

$$
\begin{array}{rll}
R_{0}=\mathbb{Z} & R=\mathbb{Z}\left[E_{1}, E_{2}\right] & R_{\alpha}=\mathbb{Z}\left[\alpha_{0}, \alpha_{1}\right] \\
A_{0}=\frac{R_{0}[X]}{\left(X^{2}\right)} & A=\frac{R[X]}{\left(X^{2}-E_{1} X+E_{2}\right)} & A_{\alpha}=\frac{R_{\alpha}[X]}{\left(\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)\right)} \\
\mathcal{F} & & \mathcal{F}_{\alpha}
\end{array}
$$

- Both (R, A) and $\left(R_{\alpha}, A_{\alpha}\right)$ specialize to $\left(R_{0}, A_{0}\right)$.
- (R, A) specializes to Lee's deformation by setting $E_{1}=0, E_{2}=-1$ and to Bar-Natan's theory by setting $E_{1}=1, E_{2}=0$.

Relations among the theories

$$
\begin{array}{rll}
R_{0}=\mathbb{Z} & R=\mathbb{Z}\left[E_{1}, E_{2}\right] & R_{\alpha}=\mathbb{Z}\left[\alpha_{0}, \alpha_{1}\right] \\
A_{0}=\frac{R_{0}[X]}{\left(X^{2}\right)} & A=\frac{R[X]}{\left(X^{2}-E_{1} X+E_{2}\right)} & A_{\alpha}=\frac{R_{\alpha}[X]}{\left(\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)\right)} \\
\mathcal{F} & & \mathcal{F}_{\alpha}
\end{array}
$$

- Both (R, A) and $\left(R_{\alpha}, A_{\alpha}\right)$ specialize to $\left(R_{0}, A_{0}\right)$.
- (R, A) specializes to Lee's deformation by setting $E_{1}=0, E_{2}=-1$ and to Bar-Natan's theory by setting $E_{1}=1, E_{2}=0$.
- Expanding

$$
\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)=X^{2}-\left(\alpha_{0}+\alpha_{1}\right) X+\alpha_{0} \alpha_{1}
$$

we see that $\left(R_{\alpha}, A_{\alpha}\right)$ is an extension of (R, A) via

$$
E_{1} \mapsto \alpha_{0}+\alpha_{1}, E_{2} \mapsto \alpha_{0} \alpha_{1} .
$$

Inverting the discriminant

Inverting the discriminant

- Consider the discriminant $\mathcal{D}=\left(\alpha_{0}-\alpha_{1}\right)^{2}$ of $\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)$.

Inverting the discriminant

- Consider the discriminant $\mathcal{D}=\left(\alpha_{0}-\alpha_{1}\right)^{2}$ of $\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)$.
- Let $R_{\alpha \mathcal{D}}, A_{\alpha \mathcal{D}}$ denote the extension of R_{α} and A_{α} by inverting \mathcal{D}

Inverting the discriminant

- Consider the discriminant $\mathcal{D}=\left(\alpha_{0}-\alpha_{1}\right)^{2}$ of $\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)$.
- Let $R_{\alpha \mathcal{D}}, A_{\alpha \mathcal{D}}$ denote the extension of R_{α} and A_{α} by inverting \mathcal{D}

$$
R_{\alpha \mathcal{D}}=R_{\alpha}\left[\mathcal{D}^{-1}\right], \quad A_{\alpha \mathcal{D}}=A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}} .
$$

Inverting the discriminant

- Consider the discriminant $\mathcal{D}=\left(\alpha_{0}-\alpha_{1}\right)^{2}$ of $\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)$.
- Let $R_{\alpha \mathcal{D}}, A_{\alpha \mathcal{D}}$ denote the extension of R_{α} and A_{α} by inverting \mathcal{D}

$$
R_{\alpha \mathcal{D}}=R_{\alpha}\left[\mathcal{D}^{-1}\right], \quad A_{\alpha \mathcal{D}}=A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}} .
$$

- There are special elements

$$
e_{0}:=\frac{X-\alpha_{0}}{\alpha_{1}-\alpha_{0}}, \quad e_{1}:=\frac{X-\alpha_{1}}{\alpha_{0}-\alpha_{1}} \in A_{\alpha \mathcal{D}}
$$

Inverting the discriminant

- Consider the discriminant $\mathcal{D}=\left(\alpha_{0}-\alpha_{1}\right)^{2}$ of $\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)$.
- Let $R_{\alpha \mathcal{D}}, A_{\alpha \mathcal{D}}$ denote the extension of R_{α} and A_{α} by inverting \mathcal{D}

$$
R_{\alpha \mathcal{D}}=R_{\alpha}\left[\mathcal{D}^{-1}\right], \quad A_{\alpha \mathcal{D}}=A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}} .
$$

- There are special elements

$$
e_{0}:=\frac{X-\alpha_{0}}{\alpha_{1}-\alpha_{0}}, \quad e_{1}:=\frac{X-\alpha_{1}}{\alpha_{0}-\alpha_{1}} \in A_{\alpha \mathcal{D}}
$$

- They form a basis for $A_{\alpha \mathcal{D}}$ and satisfy

$$
e_{0}+e_{1}=1, e_{0} e_{0}=e_{0}, e_{1} e_{1}=e_{1}, e_{0} e_{1}=0 .
$$

Inverting the discriminant

- Consider the discriminant $\mathcal{D}=\left(\alpha_{0}-\alpha_{1}\right)^{2}$ of $\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)$.
- Let $R_{\alpha \mathcal{D}}, A_{\alpha \mathcal{D}}$ denote the extension of R_{α} and A_{α} by inverting \mathcal{D}

$$
R_{\alpha \mathcal{D}}=R_{\alpha}\left[\mathcal{D}^{-1}\right], \quad A_{\alpha \mathcal{D}}=A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}} .
$$

- There are special elements

$$
e_{0}:=\frac{X-\alpha_{0}}{\alpha_{1}-\alpha_{0}}, \quad e_{1}:=\frac{X-\alpha_{1}}{\alpha_{0}-\alpha_{1}} \in A_{\alpha \mathcal{D}}
$$

- They form a basis for $A_{\alpha \mathcal{D}}$ and satisfy

$$
e_{0}+e_{1}=1, e_{0} e_{0}=e_{0}, e_{1} e_{1}=e_{1}, e_{0} e_{1}=0 .
$$

Hence the algebra structure on $A_{\alpha \mathcal{D}}$ decomposes,

$$
A_{\alpha \mathcal{D}}=A_{\alpha \mathcal{D}} e_{0} \times A_{\alpha \mathcal{D}} e_{1} .
$$

Inverting the discriminant

Inverting the discriminant

Comultiplication similarly decouples,

$$
\Delta\left(e_{0}\right)=\left(\alpha_{1}-\alpha_{0}\right) e_{0} \otimes e_{0} \quad \Delta\left(e_{1}\right)=\left(\alpha_{0}-\alpha_{1}\right) e_{1} \otimes e_{1} .
$$

Inverting the discriminant

Comultiplication similarly decouples,

$$
\Delta\left(e_{0}\right)=\left(\alpha_{1}-\alpha_{0}\right) e_{0} \otimes e_{0} \quad \Delta\left(e_{1}\right)=\left(\alpha_{0}-\alpha_{1}\right) e_{1} \otimes e_{1} .
$$

Let $\mathcal{F}_{\alpha \mathcal{D}}$ denote the TQFT associated with $\left(R_{\alpha \mathcal{D}}, A_{\alpha \mathcal{D}}\right)$.

Inverting the discriminant

Comultiplication similarly decouples,

$$
\Delta\left(e_{0}\right)=\left(\alpha_{1}-\alpha_{0}\right) e_{0} \otimes e_{0} \quad \Delta\left(e_{1}\right)=\left(\alpha_{0}-\alpha_{1}\right) e_{1} \otimes e_{1} .
$$

Let $\mathcal{F}_{\alpha \mathcal{D}}$ denote the TQFT associated with $\left(R_{\alpha \mathcal{D}}, A_{\alpha \mathcal{D}}\right)$.
The link homology determined by $\mathcal{F}_{\alpha \mathcal{D}}$ is essentially Lee's theory.

$$
\left\{e_{0}, e_{1}\right\} \leftrightarrow\{a, b\}
$$

Inverting the discriminant

Comultiplication similarly decouples,

$$
\Delta\left(e_{0}\right)=\left(\alpha_{1}-\alpha_{0}\right) e_{0} \otimes e_{0} \quad \Delta\left(e_{1}\right)=\left(\alpha_{0}-\alpha_{1}\right) e_{1} \otimes e_{1} .
$$

Let $\mathcal{F}_{\alpha \mathcal{D}}$ denote the TQFT associated with $\left(R_{\alpha \mathcal{D}}, A_{\alpha \mathcal{D}}\right)$.
The link homology determined by $\mathcal{F}_{\alpha \mathcal{D}}$ is essentially Lee's theory.

$$
\left\{e_{0}, e_{1}\right\} \leftrightarrow\{\mathrm{a}, \mathrm{~b}\}
$$

Proposition

Let L be an n component link with diagram D, and let $C_{\alpha \mathcal{D}}(D)$ denote the chain complex obtained by applying $\mathcal{F}_{\alpha \mathcal{D}}$ to the cube of resolutions. Then the homology of $C_{\alpha \mathcal{D}}(D)$ is a free $R_{\alpha \mathcal{D}}$-module of rank 2^{n}.

Inverting the discriminant

Comultiplication similarly decouples,

$$
\Delta\left(e_{0}\right)=\left(\alpha_{1}-\alpha_{0}\right) e_{0} \otimes e_{0} \quad \Delta\left(e_{1}\right)=\left(\alpha_{0}-\alpha_{1}\right) e_{1} \otimes e_{1} .
$$

Let $\mathcal{F}_{\alpha \mathcal{D}}$ denote the TQFT associated with $\left(R_{\alpha \mathcal{D}}, A_{\alpha \mathcal{D}}\right)$.
The link homology determined by $\mathcal{F}_{\alpha \mathcal{D}}$ is essentially Lee's theory.

$$
\left\{e_{0}, e_{1}\right\} \leftrightarrow\{\mathrm{a}, \mathrm{~b}\}
$$

Proposition

Let L be an n component link with diagram D, and let $C_{\alpha \mathcal{D}}(D)$ denote the chain complex obtained by applying $\mathcal{F}_{\alpha \mathcal{D}}$ to the cube of resolutions. Then the homology of $C_{\alpha \mathcal{D}}(D)$ is a free $R_{\alpha \mathcal{D}}$-module of rank 2^{n}.

Can be proven along the same lines as [BNM06, Weh08].

Annular homology

Annular homology

- Asaeda-Przytycki-Sikora [APS04] defined a homology theory for links in interval bundles over surfaces.

Annular homology

- Asaeda-Przytycki-Sikora [APS04] defined a homology theory for links in interval bundles over surfaces.
- The special case of the thickened annulus is known as annular Khovanov homology or annular APS homology.

Annular homology

- Asaeda-Przytycki-Sikora [APS04] defined a homology theory for links in interval bundles over surfaces.
- The special case of the thickened annulus is known as annular Khovanov homology or annular APS homology.
- Let $\mathbb{A}:=S^{1} \times I$ denote the annulus.

Annular homology

- Asaeda-Przytycki-Sikora [APS04] defined a homology theory for links in interval bundles over surfaces.
- The special case of the thickened annulus is known as annular Khovanov homology or annular APS homology.
- Let $\mathbb{A}:=S^{1} \times I$ denote the annulus.
- A link $L \subset \mathbb{A} \times I$ will be called an annular link.

Annular homology

- Asaeda-Przytycki-Sikora [APS04] defined a homology theory for links in interval bundles over surfaces.
- The special case of the thickened annulus is known as annular Khovanov homology or annular APS homology.
- Let $\mathbb{A}:=S^{1} \times I$ denote the annulus.
- A link $L \subset \mathbb{A} \times I$ will be called an annular link.
- Its diagram D is obtained by projecting onto \mathbb{A}.

Annular homology

- Asaeda-Przytycki-Sikora [APS04] defined a homology theory for links in interval bundles over surfaces.
- The special case of the thickened annulus is known as annular Khovanov homology or annular APS homology.
- Let $\mathbb{A}:=S^{1} \times I$ denote the annulus.
- A link $L \subset \mathbb{A} \times I$ will be called an annular link.
- Its diagram D is obtained by projecting onto \mathbb{A}.
- Form the cube of resolutions $[[D]]$ as usual, with all smoothings drawn in \mathbb{A}.

Annular homology

- Asaeda-Przytycki-Sikora [APS04] defined a homology theory for links in interval bundles over surfaces.
- The special case of the thickened annulus is known as annular Khovanov homology or annular APS homology.
- Let $\mathbb{A}:=S^{1} \times I$ denote the annulus.
- A link $L \subset \mathbb{A} \times I$ will be called an annular link.
- Its diagram D is obtained by projecting onto \mathbb{A}.
- Form the cube of resolutions [[D]] as usual, with all smoothings drawn in \mathbb{A}.
- Apply the annular TQFT \mathcal{G} to [[D]].

Annular homology

- Asaeda-Przytycki-Sikora [APS04] defined a homology theory for links in interval bundles over surfaces.
- The special case of the thickened annulus is known as annular Khovanov homology or annular APS homology.
- Let $\mathbb{A}:=S^{1} \times I$ denote the annulus.
- A link $L \subset \mathbb{A} \times I$ will be called an annular link.
- Its diagram D is obtained by projecting onto \mathbb{A}.
- Form the cube of resolutions [[D]] as usual, with all smoothings drawn in \mathbb{A}.
- Apply the annular TQFT \mathcal{G} to [[D]].
- Annular homology is triply graded: in additional to homological and quantum grading, there is a third grading coming from winding around the annulus.

Annular homology

Annular homology

- Embed $\mathbb{A} \hookrightarrow \mathbb{R}^{2} \backslash\{(0,0)\}$ standardly.

Annular homology

- Embed $\mathbb{A} \hookrightarrow \mathbb{R}^{2} \backslash\{(0,0)\}$ standardly.

- Annular link diagrams are disjoint from the puncture \times.

Annular homology

- Embed $\mathbb{A} \hookrightarrow \mathbb{R}^{2} \backslash\{(0,0)\}$ standardly.

- Annular link diagrams are disjoint from the puncture \times.
- Represent \mathbb{A} by simply indicating the puncture.

Annular homology

- Embed $\mathbb{A} \hookrightarrow \mathbb{R}^{2} \backslash\{(0,0)\}$ standardly.

- Annular link diagrams are disjoint from the puncture \times.
- Represent \mathbb{A} by simply indicating the puncture.

Annular homology

- Embed $\mathbb{A} \hookrightarrow \mathbb{R}^{2} \backslash\{(0,0)\}$ standardly.

- Annular link diagrams are disjoint from the puncture \times.
- Represent \mathbb{A} by simply indicating the puncture.

The annular TQFT \mathcal{G}

The annular TQFT \mathcal{G}

There are two types of circles in \mathbb{A} :

(a) trivial

(b) essential

The annular TQFT \mathcal{G}

There are two types of circles in \mathbb{A} :

(a) trivial

(b) essential

Let $\mathscr{C} \subset \mathbb{A}$ be a collection of disjoint simple closed curves. Define $\mathcal{G}(\mathscr{C})$ as follows.

The annular TQFT \mathcal{G}

There are two types of circles in \mathbb{A} :

(a) trivial

(b) essential

Let $\mathscr{C} \subset \mathbb{A}$ be a collection of disjoint simple closed curves. Define $\mathcal{G}(\mathscr{C})$ as follows.

- The underlying abelian group is just $\mathcal{F}(\mathscr{C})=A_{0}^{\otimes|\mathscr{C}|}$

The annular TQFT \mathcal{G}

There are two types of circles in \mathbb{A} :

(a) trivial

(b) essential

Let $\mathscr{C} \subset \mathbb{A}$ be a collection of disjoint simple closed curves. Define $\mathcal{G}(\mathscr{C})$ as follows.

- The underlying abelian group is just $\mathcal{F}(\mathscr{C})=A_{0}^{\otimes|\mathscr{C}|}$
- Define the annular grading adeg on each tensor factor by setting

$$
\operatorname{adeg}(1)=\operatorname{adeg}(X)=0 \text { for a trivial circle }
$$

The annular TQFT \mathcal{G}

There are two types of circles in \mathbb{A} :

(a) trivial

(b) essential

Let $\mathscr{C} \subset \mathbb{A}$ be a collection of disjoint simple closed curves. Define $\mathcal{G}(\mathscr{C})$ as follows.

- The underlying abelian group is just $\mathcal{F}(\mathscr{C})=A_{0}^{\otimes|\mathscr{C}|}$
- Define the annular grading adeg on each tensor factor by setting

$$
\begin{gathered}
\operatorname{adeg}(1)=\operatorname{adeg}(X)=0 \text { for a trivial circle } \\
\operatorname{adeg}(1)=-1, \operatorname{adeg}(X)=1 \text { for an essential circle }
\end{gathered}
$$

The annular TQFT \mathcal{G}

There are two types of circles in \mathbb{A} :

(a) trivial

(b) essential

Let $\mathscr{C} \subset \mathbb{A}$ be a collection of disjoint simple closed curves. Define $\mathcal{G}(\mathscr{C})$ as follows.

- The underlying abelian group is just $\mathcal{F}(\mathscr{C})=A_{0}^{\otimes|\mathscr{C}|}$
- Define the annular grading adeg on each tensor factor by setting

$$
\begin{gathered}
\operatorname{adeg}(1)=\operatorname{adeg}(X)=0 \text { for a trivial circle } \\
\operatorname{adeg}(1)=-1, \operatorname{adeg}(X)=1 \text { for an essential circle }
\end{gathered}
$$

So $\mathcal{G}(\mathscr{C})$ is a bigraded free abelian group via (deg, adeg).

The annular TQFT \mathcal{G}

Defining \mathcal{G} on annular cobordisms:

The annular TQFT \mathcal{G}

Defining \mathcal{G} on annular cobordisms:

- Let $S \subset \mathbb{A} \times I$ be a cobordism from \mathscr{C}_{1} to \mathscr{C}_{2}.

The annular TQFT \mathcal{G}

Defining \mathcal{G} on annular cobordisms:

- Let $S \subset \mathbb{A} \times I$ be a cobordism from \mathscr{C}_{1} to \mathscr{C}_{2}.
- View S as a surface in $\mathbb{R}^{2} \times I$, and apply the Khovanov TQFT

$$
\mathcal{F}(S): \mathcal{F}\left(\mathscr{C}_{1}\right) \rightarrow \mathcal{F}\left(\mathscr{C}_{2}\right)
$$

The annular TQFT \mathcal{G}

Defining \mathcal{G} on annular cobordisms:

- Let $S \subset \mathbb{A} \times I$ be a cobordism from \mathscr{C}_{1} to \mathscr{C}_{2}.
- View S as a surface in $\mathbb{R}^{2} \times I$, and apply the Khovanov TQFT

$$
\mathcal{F}(S): \mathcal{F}\left(\mathscr{C}_{1}\right) \rightarrow \mathcal{F}\left(\mathscr{C}_{2}\right)
$$

- Roberts [Rob13] observed that $\mathcal{F}(S)$ is non-decreasing with respect to the annular grading.

The annular TQFT \mathcal{G}

Defining \mathcal{G} on annular cobordisms:

- Let $S \subset \mathbb{A} \times I$ be a cobordism from \mathscr{C}_{1} to \mathscr{C}_{2}.
- View S as a surface in $\mathbb{R}^{2} \times I$, and apply the Khovanov TQFT

$$
\mathcal{F}(S): \mathcal{F}\left(\mathscr{C}_{1}\right) \rightarrow \mathcal{F}\left(\mathscr{C}_{2}\right)
$$

- Roberts [Rob13] observed that $\mathcal{F}(S)$ is non-decreasing with respect to the annular grading.
- Let $\mathcal{F}(S)_{0}$ denote the adeg-preserving part of $\mathcal{F}(S)$, and set

$$
\mathcal{G}(S):=\mathcal{F}(S)_{0}
$$

The annular TQFT \mathcal{G}

Defining \mathcal{G} on annular cobordisms:

- Let $S \subset \mathbb{A} \times I$ be a cobordism from \mathscr{C}_{1} to \mathscr{C}_{2}.
- View S as a surface in $\mathbb{R}^{2} \times I$, and apply the Khovanov TQFT

$$
\mathcal{F}(S): \mathcal{F}\left(\mathscr{C}_{1}\right) \rightarrow \mathcal{F}\left(\mathscr{C}_{2}\right)
$$

- Roberts [Rob13] observed that $\mathcal{F}(S)$ is non-decreasing with respect to the annular grading.
- Let $\mathcal{F}(S)_{0}$ denote the adeg-preserving part of $\mathcal{F}(S)$, and set

$$
\mathcal{G}(S):=\mathcal{F}(S)_{0}
$$

- In other words, \mathcal{F} respects the adeg filtration, and \mathcal{G} is the associated graded map.

The annular TQFT \mathcal{G}

The annular TQFT \mathcal{G}

We distinguish the module assigned to trivial and essential circles. For a circle $C \subset \mathbb{A}$, write

$$
\mathcal{G}(C)= \begin{cases}A_{0} & \text { if } C \text { is trivial } \\ V & \text { if } C \text { is essential }\end{cases}
$$

The annular TQFT \mathcal{G}

We distinguish the module assigned to trivial and essential circles. For a circle $C \subset \mathbb{A}$, write

$$
\mathcal{G}(C)= \begin{cases}A_{0} & \text { if } C \text { is trivial } \\ V & \text { if } C \text { is essential }\end{cases}
$$

If $\mathscr{C} \subset \mathbb{A}$ consists of n trivial and m essential circles, then

$$
\mathcal{G}(\mathscr{C})=A_{0}^{\otimes n} \otimes V^{\otimes m} .
$$

The annular TQFT \mathcal{G}

We distinguish the module assigned to trivial and essential circles. For a circle $C \subset \mathbb{A}$, write

$$
\mathcal{G}(C)= \begin{cases}A_{0} & \text { if } C \text { is trivial } \\ V & \text { if } C \text { is essential }\end{cases}
$$

If $\mathscr{C} \subset \mathbb{A}$ consists of n trivial and m essential circles, then

$$
\mathcal{G}(\mathscr{C})=A_{0}^{\otimes n} \otimes V^{\otimes m} .
$$

For an essential circle, use the notation $v_{-}=1, v_{+}=X$

The annular TQFT \mathcal{G}

We distinguish the module assigned to trivial and essential circles. For a circle $C \subset \mathbb{A}$, write

$$
\mathcal{G}(C)= \begin{cases}A_{0} & \text { if } C \text { is trivial } \\ V & \text { if } C \text { is essential }\end{cases}
$$

If $\mathscr{C} \subset \mathbb{A}$ consists of n trivial and m essential circles, then

$$
\mathcal{G}(\mathscr{C})=A_{0}^{\otimes n} \otimes V^{\otimes m}
$$

For an essential circle, use the notation $v_{-}=1, v_{+}=X$

The annular TQFT \mathcal{G}

(a)

(b)

(c)

(d)

Figure: Saddles involving essential circles

The annular TQFT \mathcal{G}

(a)

(b)

(c)

(d)

Figure: Saddles involving essential circles
Recall $v_{-}=1, v_{+}=X$.

The annular TQFT \mathcal{G}

(a)

(b)

(c)

(d)

Figure: Saddles involving essential circles
Recall $v_{-}=1, v_{+}=X$.

$$
\begin{aligned}
& V \otimes A_{0} \xrightarrow{(a)} V \\
& v_{-} \otimes 1 \mapsto v_{-} \\
& v_{+} \otimes 1 \mapsto v_{+} \\
& v_{-} \otimes X \mapsto 0 \\
& v_{+} \otimes X \mapsto 0
\end{aligned}
$$

The annular TQFT \mathcal{G}

(a)

(b)

(c)

(d)

Figure: Saddles involving essential circles
Recall $v_{-}=1, v_{+}=X$.

$$
\begin{gathered}
V \otimes A_{0} \xrightarrow{(a)} V \\
v_{-} \otimes 1 \mapsto v_{-} \\
v_{+} \otimes 1 \mapsto v_{+} \\
v_{-} \otimes X \mapsto 0 \\
v_{+} \otimes X \mapsto 0
\end{gathered}
$$

We see that X acts trivially on an essential circle.

The annular TQFT \mathcal{G}

The annular TQFT \mathcal{G}

The TQFT \mathcal{G} factors through the following relation.

Figure: Boerner's relation

The annular TQFT \mathcal{G}

The TQFT \mathcal{G} factors through the following relation.

Figure: Boerner's relation

Indeed, there are no nonzero endomorphisms of $V=\mathbb{Z} v_{-} \oplus \mathbb{Z} v_{+}$of bidegree $(2,0)$

The annular TQFT \mathcal{G}

The TQFT \mathcal{G} factors through the following relation.

Figure: Boerner's relation

Indeed, there are no nonzero endomorphisms of $V=\mathbb{Z} v_{-} \oplus \mathbb{Z} v_{+}$of bidegree (2,0) This can't hold in the equivariant theories, since

$$
X^{2}-E_{1} X+E_{2}=0
$$

Obstruction to $U(2)$-equivariant theory

Obstruction to $U(2)$-equivariant theory

- Recall the $U(2)$-equivariant pair

$$
\begin{gathered}
R=\mathbb{Z}\left[E_{1}, E_{2}\right], \quad A=R[X] /\left(X^{2}-E_{1} X+E_{2}\right) \\
\operatorname{deg}\left(E_{1}\right)=2, \quad \operatorname{deg}\left(E_{2}\right)=4
\end{gathered}
$$

Obstruction to $U(2)$-equivariant theory

- Recall the $U(2)$-equivariant pair

$$
\begin{gathered}
R=\mathbb{Z}\left[E_{1}, E_{2}\right], \quad A=R[X] /\left(X^{2}-E_{1} X+E_{2}\right) \\
\operatorname{deg}\left(E_{1}\right)=2, \quad \operatorname{deg}\left(E_{2}\right)=4
\end{gathered}
$$

- Set $\operatorname{adeg}\left(E_{1}\right)=\operatorname{adeg}\left(E_{2}\right)=0$.

Obstruction to $U(2)$-equivariant theory

- Recall the $U(2)$-equivariant pair

$$
\begin{gathered}
R=\mathbb{Z}\left[E_{1}, E_{2}\right], \quad A=R[X] /\left(X^{2}-E_{1} X+E_{2}\right) \\
\operatorname{deg}\left(E_{1}\right)=2, \quad \operatorname{deg}\left(E_{2}\right)=4
\end{gathered}
$$

- Set $\operatorname{adeg}\left(E_{1}\right)=\operatorname{adeg}\left(E_{2}\right)=0$.
- Suppose M is a bigraded, free, rank $2 R$-module with basis m_{-}, m_{+}in bidegrees $(-1,-1)$ and $(1,1)$, respectively.

Obstruction to $U(2)$-equivariant theory

- Recall the $U(2)$-equivariant pair

$$
\begin{gathered}
R=\mathbb{Z}\left[E_{1}, E_{2}\right], \quad A=R[X] /\left(X^{2}-E_{1} X+E_{2}\right) \\
\operatorname{deg}\left(E_{1}\right)=2, \quad \operatorname{deg}\left(E_{2}\right)=4
\end{gathered}
$$

- Set $\operatorname{adeg}\left(E_{1}\right)=\operatorname{adeg}\left(E_{2}\right)=0$.
- Suppose M is a bigraded, free, rank $2 R$-module with basis m_{-}, m_{+}in bidegrees $(-1,-1)$ and $(1,1)$, respectively.
- Let $g: M \rightarrow M$ denote the map assigned to

Obstruction to $U(2)$-equivariant theory

- Recall the $U(2)$-equivariant pair

$$
\begin{gathered}
R=\mathbb{Z}\left[E_{1}, E_{2}\right], \quad A=R[X] /\left(X^{2}-E_{1} X+E_{2}\right) \\
\operatorname{deg}\left(E_{1}\right)=2, \quad \operatorname{deg}\left(E_{2}\right)=4
\end{gathered}
$$

- Set $\operatorname{adeg}\left(E_{1}\right)=\operatorname{adeg}\left(E_{2}\right)=0$.
- Suppose M is a bigraded, free, rank $2 R$-module with basis m_{-}, m_{+}in bidegrees $(-1,-1)$ and $(1,1)$, respectively.
- Let $g: M \rightarrow M$ denote the map assigned to

- Necessarily, $g\left(m_{-}\right)=n E_{1} m_{-}$for some $n \in \mathbb{Z}$.

Obstruction to $U(2)$-equivariant theory

- Recall the $U(2)$-equivariant pair

$$
\begin{gathered}
R=\mathbb{Z}\left[E_{1}, E_{2}\right], \quad A=R[X] /\left(X^{2}-E_{1} X+E_{2}\right) \\
\operatorname{deg}\left(E_{1}\right)=2, \quad \operatorname{deg}\left(E_{2}\right)=4
\end{gathered}
$$

- Set $\operatorname{adeg}\left(E_{1}\right)=\operatorname{adeg}\left(E_{2}\right)=0$.
- Suppose M is a bigraded, free, rank $2 R$-module with basis m_{-}, m_{+}in bidegrees $(-1,-1)$ and $(1,1)$, respectively.
- Let $g: M \rightarrow M$ denote the map assigned to

- Necessarily, $g\left(m_{-}\right)=n E_{1} m_{-}$for some $n \in \mathbb{Z}$.
- However $g^{2}-E_{1} g+E_{2}$ id $=0$

Obstruction to $U(2)$-equivariant theory

- Recall the $U(2)$-equivariant pair

$$
\begin{gathered}
R=\mathbb{Z}\left[E_{1}, E_{2}\right], \quad A=R[X] /\left(X^{2}-E_{1} X+E_{2}\right) \\
\operatorname{deg}\left(E_{1}\right)=2, \quad \operatorname{deg}\left(E_{2}\right)=4
\end{gathered}
$$

- Set $\operatorname{adeg}\left(E_{1}\right)=\operatorname{adeg}\left(E_{2}\right)=0$.
- Suppose M is a bigraded, free, rank $2 R$-module with basis m_{-}, m_{+}in bidegrees $(-1,-1)$ and $(1,1)$, respectively.
- Let $g: M \rightarrow M$ denote the map assigned to

- Necessarily, $g\left(m_{-}\right)=n E_{1} m_{-}$for some $n \in \mathbb{Z}$.
- However $g^{2}-E_{1} g+E_{2}$ id $=0 \Rightarrow n^{2} E_{1}^{2}-n E_{1}^{2}+E_{2}=0$.

The equivariant annular TQFT \mathcal{G}_{α}

The equivariant annular TQFT \mathcal{G}_{α}

- Recall the $U(1) \times U(1)$-equivariant pair

$$
R_{\alpha}=\mathbb{Z}\left[\alpha_{0}, \alpha_{1}\right], \quad A_{\alpha}=\frac{R_{\alpha}[X]}{\left(\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)\right)}, \quad \operatorname{deg}\left(\alpha_{0}\right)=\operatorname{deg}\left(\alpha_{1}\right)=2
$$

The equivariant annular TQFT \mathcal{G}_{α}

- Recall the $U(1) \times U(1)$-equivariant pair

$$
R_{\alpha}=\mathbb{Z}\left[\alpha_{0}, \alpha_{1}\right], \quad A_{\alpha}=\frac{R_{\alpha}[X]}{\left(\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)\right)}, \quad \operatorname{deg}\left(\alpha_{0}\right)=\operatorname{deg}\left(\alpha_{1}\right)=2
$$

- We define an annular TQFT \mathcal{G}_{α} taking values in \mathbb{Z}^{2}-graded R_{α}-modules.

The equivariant annular TQFT \mathcal{G}_{α}

- Recall the $U(1) \times U(1)$-equivariant pair

$$
R_{\alpha}=\mathbb{Z}\left[\alpha_{0}, \alpha_{1}\right], \quad A_{\alpha}=\frac{R_{\alpha}[X]}{\left(\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)\right)}, \quad \operatorname{deg}\left(\alpha_{0}\right)=\operatorname{deg}\left(\alpha_{1}\right)=2
$$

- We define an annular TQFT \mathcal{G}_{α} taking values in \mathbb{Z}^{2}-graded R_{α}-modules.
- Note that essential circles in \mathbb{A} are naturally ordered from innermost to outermost

The equivariant annular TQFT \mathcal{G}_{α}

- Recall the $U(1) \times U(1)$-equivariant pair

$$
R_{\alpha}=\mathbb{Z}\left[\alpha_{0}, \alpha_{1}\right], \quad A_{\alpha}=\frac{R_{\alpha}[X]}{\left(\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)\right)}, \quad \operatorname{deg}\left(\alpha_{0}\right)=\operatorname{deg}\left(\alpha_{1}\right)=2
$$

- We define an annular TQFT \mathcal{G}_{α} taking values in \mathbb{Z}^{2}-graded R_{α}-modules.
- Note that essential circles in \mathbb{A} are naturally ordered from innermost to outermost

The equivariant annular TQFT \mathcal{G}_{α}

The equivariant annular TQFT \mathcal{G}_{α}

- Let $\mathscr{C} \subset \mathbb{A}$ be a collection of circles. As an R_{α}-module, set $\mathcal{G}_{\alpha}(\mathscr{C})$ to simply be

$$
\mathcal{G}_{\alpha}(\mathscr{C})=\mathcal{F}_{\alpha}(\mathscr{C}) .
$$

The equivariant annular TQFT \mathcal{G}_{α}

- Let $\mathscr{C} \subset \mathbb{A}$ be a collection of circles. As an R_{α}-module, set $\mathcal{G}_{\alpha}(\mathscr{C})$ to simply be

$$
\mathcal{G}_{\alpha}(\mathscr{C})=\mathcal{F}_{\alpha}(\mathscr{C}) .
$$

We define an additional annular grading on $\mathcal{F}_{\alpha}(\mathscr{C})=A_{\alpha}^{\otimes|\mathscr{C}|}$.

The equivariant annular TQFT \mathcal{G}_{α}

- Let $\mathscr{C} \subset \mathbb{A}$ be a collection of circles. As an R_{α}-module, set $\mathcal{G}_{\alpha}(\mathscr{C})$ to simply be

$$
\mathcal{G}_{\alpha}(\mathscr{C})=\mathcal{F}_{\alpha}(\mathscr{C}) .
$$

We define an additional annular grading on $\mathcal{F}_{\alpha}(\mathscr{C})=A_{\alpha}^{\otimes|\mathscr{C}|}$.

- Both $\left\{1, X-\alpha_{0}\right\}$ and $\left\{1, X-\alpha_{1}\right\}$ are homogeneous R_{α}-bases for A_{α},

$$
\operatorname{deg}(1)=-1, \quad \operatorname{deg}\left(X-\alpha_{0}\right)=\operatorname{deg}\left(X-\alpha_{1}\right)=1
$$

The equivariant annular TQFT \mathcal{G}_{α}

- Let $\mathscr{C} \subset \mathbb{A}$ be a collection of circles. As an R_{α}-module, set $\mathcal{G}_{\alpha}(\mathscr{C})$ to simply be

$$
\mathcal{G}_{\alpha}(\mathscr{C})=\mathcal{F}_{\alpha}(\mathscr{C})
$$

We define an additional annular grading on $\mathcal{F}_{\alpha}(\mathscr{C})=A_{\alpha}^{\otimes|\mathscr{C}|}$.

- Both $\left\{1, X-\alpha_{0}\right\}$ and $\left\{1, X-\alpha_{1}\right\}$ are homogeneous R_{α}-bases for A_{α},

$$
\operatorname{deg}(1)=-1, \quad \operatorname{deg}\left(X-\alpha_{0}\right)=\operatorname{deg}\left(X-\alpha_{1}\right)=1
$$

- Introduce notation

$$
\begin{array}{ll}
v_{0}=1, & v_{1}=X-\alpha_{0}, \\
v_{0}^{\prime}=1, & v_{1}^{\prime}=X-\alpha_{1},
\end{array}
$$

The equivariant annular TQFT \mathcal{G}_{α}

- Let $\mathscr{C} \subset \mathbb{A}$ be a collection of circles. As an R_{α}-module, set $\mathcal{G}_{\alpha}(\mathscr{C})$ to simply be

$$
\mathcal{G}_{\alpha}(\mathscr{C})=\mathcal{F}_{\alpha}(\mathscr{C}) .
$$

We define an additional annular grading on $\mathcal{F}_{\alpha}(\mathscr{C})=A_{\alpha}^{\otimes|\mathscr{C}|}$.

- Both $\left\{1, X-\alpha_{0}\right\}$ and $\left\{1, X-\alpha_{1}\right\}$ are homogeneous R_{α}-bases for A_{α},

$$
\operatorname{deg}(1)=-1, \quad \operatorname{deg}\left(X-\alpha_{0}\right)=\operatorname{deg}\left(X-\alpha_{1}\right)=1
$$

- Introduce notation

$$
\begin{array}{ll}
v_{0}=1, & v_{1}=X-\alpha_{0}, \\
v_{0}^{\prime}=1, & v_{1}^{\prime}=X-\alpha_{1},
\end{array}
$$

With

$$
\operatorname{adeg}\left(v_{0}\right)=\operatorname{adeg}\left(v_{0}^{\prime}\right)=-1, \quad \operatorname{adeg}\left(v_{1}\right)=\operatorname{adeg}\left(v_{1}^{\prime}\right)=1
$$

The equivariant annular TQFT \mathcal{G}_{α}

The equivariant annular TQFT \mathcal{G}_{α}

- Every tensor factor A_{α} in $\mathcal{F}_{\alpha}(\mathscr{C})$ corresponding to a trivial circle is concentrated in annular degree zero.

The equivariant annular TQFT \mathcal{G}_{α}

- Every tensor factor A_{α} in $\mathcal{F}_{\alpha}(\mathscr{C})$ corresponding to a trivial circle is concentrated in annular degree zero.
- Factors corresponding to essential circles are assigned the (bi)homogeneous bases

$$
\left\{v_{0}, v_{1}\right\}=\left\{1, X-\alpha_{0}\right\} \text { or }\left\{v_{0}^{\prime}, v_{1}^{\prime}\right\}=\left\{1, X-\alpha_{1}\right\}
$$

in an alternating manner, depending on nesting.

The equivariant annular TQFT \mathcal{G}_{α}

- Every tensor factor A_{α} in $\mathcal{F}_{\alpha}(\mathscr{C})$ corresponding to a trivial circle is concentrated in annular degree zero.
- Factors corresponding to essential circles are assigned the (bi)homogeneous bases

$$
\left\{v_{0}, v_{1}\right\}=\left\{1, X-\alpha_{0}\right\} \text { or }\left\{v_{0}^{\prime}, v_{1}^{\prime}\right\}=\left\{1, X-\alpha_{1}\right\}
$$

in an alternating manner, depending on nesting.

- Say, the first essential circle is assigned $\left\{v_{0}, v_{1}\right\}$, the second is assigned $\left\{v_{0}^{\prime}, v_{1}^{\prime}\right\}$, etc.

The equivariant annular TQFT \mathcal{G}_{α}

The equivariant annular TQFT \mathcal{G}_{α}

Proposition

Let $S \subset \mathbb{A} \times I$ be a cobordism from \mathscr{C}_{1} to \mathscr{C}_{2}. Viewing S as a cobordism in $\mathbb{R}^{2} \times I$, the map

$$
\mathcal{F}_{\alpha}(S): \mathcal{G}_{\alpha}\left(\mathscr{C}_{1}\right) \rightarrow \mathcal{G}_{\alpha}\left(\mathscr{C}_{2}\right)
$$

does not decrease adeg.

The equivariant annular TQFT \mathcal{G}_{α}

Proposition

Let $S \subset \mathbb{A} \times I$ be a cobordism from \mathscr{C}_{1} to \mathscr{C}_{2}. Viewing S as a cobordism in $\mathbb{R}^{2} \times I$, the map

$$
\mathcal{F}_{\alpha}(S): \mathcal{G}_{\alpha}\left(\mathscr{C}_{1}\right) \rightarrow \mathcal{G}_{\alpha}\left(\mathscr{C}_{2}\right)
$$

does not decrease adeg.

- Define \mathcal{G}_{α} on annular cobordisms by setting

$$
\mathcal{G}_{\alpha}(S):=\mathcal{F}_{\alpha}(S)_{0}
$$

where $\mathcal{F}_{\alpha}(S)_{0}$ denotes the adeg-preserving part.

The equivariant annular TQFT \mathcal{G}_{α}

Proposition

Let $S \subset \mathbb{A} \times I$ be a cobordism from \mathscr{C}_{1} to \mathscr{C}_{2}. Viewing S as a cobordism in $\mathbb{R}^{2} \times I$, the map

$$
\mathcal{F}_{\alpha}(S): \mathcal{G}_{\alpha}\left(\mathscr{C}_{1}\right) \rightarrow \mathcal{G}_{\alpha}\left(\mathscr{C}_{2}\right)
$$

does not decrease adeg.

- Define \mathcal{G}_{α} on annular cobordisms by setting

$$
\mathcal{G}_{\alpha}(S):=\mathcal{F}_{\alpha}(S)_{0}
$$

where $\mathcal{F}_{\alpha}(S)_{0}$ denotes the adeg-preserving part.

- Setting $\alpha_{0}=\alpha_{1}=0$ recovers the (non-equivariant) annular TQFT \mathcal{G}.

The equivariant annular TQFT \mathcal{G}_{α}

Proposition

Let $S \subset \mathbb{A} \times I$ be a cobordism from \mathscr{C}_{1} to \mathscr{C}_{2}. Viewing S as a cobordism in $\mathbb{R}^{2} \times I$, the map

$$
\mathcal{F}_{\alpha}(S): \mathcal{G}_{\alpha}\left(\mathscr{C}_{1}\right) \rightarrow \mathcal{G}_{\alpha}\left(\mathscr{C}_{2}\right)
$$

does not decrease adeg.

- Define \mathcal{G}_{α} on annular cobordisms by setting

$$
\mathcal{G}_{\alpha}(S):=\mathcal{F}_{\alpha}(S)_{0}
$$

where $\mathcal{F}_{\alpha}(S)_{0}$ denotes the adeg-preserving part.

- Setting $\alpha_{0}=\alpha_{1}=0$ recovers the (non-equivariant) annular TQFT \mathcal{G}.
- Can set, say $\alpha_{0}=0$ and rename α_{1} to $\alpha_{1}=h$ to get an annular version of Bar-Natan homology.

The equivariant annular TQFT \mathcal{G}_{α}

The equivariant annular TQFT \mathcal{G}_{α}

Key example: Let S denote

The equivariant annular TQFT \mathcal{G}_{α}

Key example: Let S denote

Recall $v_{0}=1, v_{1}=X-\alpha_{0}$.

The equivariant annular TQFT \mathcal{G}_{α}

Key example: Let S denote

Recall $v_{0}=1, v_{1}=X-\alpha_{0}$.

$$
\mathcal{F}_{\alpha}(S)\left(v_{0}\right)
$$

The equivariant annular TQFT \mathcal{G}_{α}

Key example: Let S denote

Recall $v_{0}=1, v_{1}=X-\alpha_{0}$.

$$
\mathcal{F}_{\alpha}(S)\left(v_{0}\right)=X
$$

The equivariant annular TQFT \mathcal{G}_{α}

Key example: Let S denote

Recall $v_{0}=1, v_{1}=X-\alpha_{0}$.

$$
\mathcal{F}_{\alpha}(S)\left(v_{0}\right)=X=X-\alpha_{0}+\alpha_{0}
$$

The equivariant annular TQFT \mathcal{G}_{α}

Key example: Let S denote

Recall $v_{0}=1, v_{1}=X-\alpha_{0}$.

$$
\mathcal{F}_{\alpha}(S)\left(v_{0}\right)=X=X-\alpha_{0}+\alpha_{0}=v_{1}+\alpha_{0} v_{0}
$$

The equivariant annular TQFT \mathcal{G}_{α}

Key example: Let S denote

Recall $v_{0}=1, v_{1}=X-\alpha_{0}$.

$$
\begin{gathered}
\mathcal{F}_{\alpha}(S)\left(v_{0}\right)=X=X-\alpha_{0}+\alpha_{0}=\sqrt{v_{1}}+\alpha_{0} v_{0} \\
\mathcal{F}_{\alpha}(S)\left(v_{1}\right)=\alpha_{1} v_{1}
\end{gathered}
$$

The equivariant annular TQFT \mathcal{G}_{α}

Key example: Let S denote

Recall $v_{0}=1, v_{1}=X-\alpha_{0}$.

$$
\begin{gathered}
\mathcal{F}_{\alpha}(S)\left(v_{0}\right)=X=X-\alpha_{0}+\alpha_{0}=\sqrt{v_{1}}+\alpha_{0} v_{0} \\
\mathcal{F}_{\alpha}(S)\left(v_{1}\right)=\alpha_{1} v_{1}
\end{gathered}
$$

Then the map $\mathcal{G}_{\alpha}(S)$ assigned to S is

$$
\begin{aligned}
& \mathcal{G}_{\alpha}(S)\left(v_{0}\right)=\alpha_{0} v_{0} \\
& \mathcal{G}_{\alpha}(S)\left(v_{1}\right)=\alpha_{1} v_{1}
\end{aligned}
$$

More generally: let S denote the following cobordism

Figure: Product cobordism with the i-th component dotted

More generally: let S denote the following cobordism

Figure: Product cobordism with the i-th component dotted

Then $\mathcal{G}_{\alpha}(S)$ is the identity on all tensor factors except the i-th, where it acts via

$$
\begin{gathered}
i \text { odd } \\
v_{0} \mapsto \alpha_{0} v_{0} \\
v_{1} \mapsto \alpha_{1} v_{1}
\end{gathered}
$$

$$
\begin{aligned}
i & \text { even } \\
v_{0}^{\prime} & \mapsto \alpha_{1} v_{0}^{\prime} \\
v_{1}^{\prime} & \mapsto \alpha_{0} v_{1}^{\prime}
\end{aligned}
$$

The equivariant annular TQFT \mathcal{G}_{α}

The equivariant annular TQFT \mathcal{G}_{α}

Consider the cobordism

The equivariant annular TQFT \mathcal{G}_{α}

Consider the cobordism

$$
\begin{array}{ll}
v_{0}=1, & v_{1}=X-\alpha_{0} \\
v_{0}^{\prime}=1, & v_{1}^{\prime}=X-\alpha_{1}
\end{array}
$$

The equivariant annular TQFT \mathcal{G}_{α}

Consider the cobordism

$$
\begin{aligned}
& v_{0}=1, \quad v_{1}=X-\alpha_{0} \\
& v_{0}^{\prime}=1, \quad v_{1}^{\prime}=X-\alpha_{1} \\
& \\
& v_{0} \otimes v_{0}^{\prime} \mapsto 1 \\
& v_{1} \otimes v_{0}^{\prime} \mapsto X-\alpha_{0} \\
& v_{0} \otimes v_{1}^{\prime} \mapsto X-\alpha_{1} \\
& \\
& v_{1} \otimes v_{1}^{\prime} \mapsto 0
\end{aligned}
$$

The equivariant annular TQFT \mathcal{G}_{α}

Consider the cobordism

$$
\begin{array}{ll}
v_{0}=1, & v_{1}=X-\alpha_{0} \\
v_{0}^{\prime}=1, & v_{1}^{\prime}=X-\alpha_{1}
\end{array}
$$

$$
v_{0} \otimes v_{0}^{\prime} \mapsto 1
$$

$$
v_{1} \otimes v_{0}^{\prime} \mapsto X-\alpha_{0}
$$

$$
v_{0} \otimes v_{1}^{\prime} \mapsto X-\alpha_{1}
$$

$$
v_{1} \otimes v_{1}^{\prime} \mapsto 0
$$

Note that such a merge is always between consecutive essential circles.

Some remarks

Some remarks

- Maps assigned to cobordisms by \mathcal{G}_{α} can be "guessed".

Some remarks

- Maps assigned to cobordisms by \mathcal{G}_{α} can be "guessed".
- Again, let S denote

Some remarks

- Maps assigned to cobordisms by \mathcal{G}_{α} can be "guessed".
- Again, let S denote

- Let M be a bigraded, free, rank $2 R_{\alpha}$-module with basis m_{-}, m_{+}in bidegrees $(-1,-1)$ and $(1,1)$, respectively.

Some remarks

- Maps assigned to cobordisms by \mathcal{G}_{α} can be "guessed".
- Again, let S denote

- Let M be a bigraded, free, rank $2 R_{\alpha}$-module with basis m_{-}, m_{+}in bidegrees $(-1,-1)$ and $(1,1)$, respectively.
- Bidegree considerations and the relation $X^{2}-\left(\alpha_{0}+\alpha_{1}\right) X+\alpha_{0} \alpha_{1}$ in A_{α} give conditions on what the map assigned to S can be.

Some remarks

- Maps assigned to cobordisms by \mathcal{G}_{α} can be "guessed".
- Again, let S denote

- Let M be a bigraded, free, rank $2 R_{\alpha}$-module with basis m_{-}, m_{+}in bidegrees $(-1,-1)$ and $(1,1)$, respectively.
- Bidegree considerations and the relation $X^{2}-\left(\alpha_{0}+\alpha_{1}\right) X+\alpha_{0} \alpha_{1}$ in A_{α} give conditions on what the map assigned to S can be.
- The alternating nature can be determined by considering the cobordism

Some remarks

- Maps assigned to cobordisms by \mathcal{G}_{α} can be "guessed".
- Again, let S denote

- Let M be a bigraded, free, rank $2 R_{\alpha}$-module with basis m_{-}, m_{+}in bidegrees $(-1,-1)$ and $(1,1)$, respectively.
- Bidegree considerations and the relation $X^{2}-\left(\alpha_{0}+\alpha_{1}\right) X+\alpha_{0} \alpha_{1}$ in A_{α} give conditions on what the map assigned to S can be.
- The alternating nature can be determined by considering the cobordism

- Grigsby-Licata-Wehrli [GLW18] showed that the annular chain complex carries an action of $s /(2)$.

Some remarks

- Maps assigned to cobordisms by \mathcal{G}_{α} can be "guessed".
- Again, let S denote

- Let M be a bigraded, free, rank $2 R_{\alpha}$-module with basis m_{-}, m_{+}in bidegrees $(-1,-1)$ and $(1,1)$, respectively.
- Bidegree considerations and the relation $X^{2}-\left(\alpha_{0}+\alpha_{1}\right) X+\alpha_{0} \alpha_{1}$ in A_{α} give conditions on what the map assigned to S can be.
- The alternating nature can be determined by considering the cobordism

- Grigsby-Licata-Wehrli [GLW18] showed that the annular chain complex carries an action of $s /(2)$.
- This action also depends on parity of nesting.

Inverting the discriminant

Inverting the discriminant

$$
\mathcal{D}=\left(\alpha_{0}-\alpha_{1}\right)^{2}, \quad R_{\alpha \mathcal{D}}=R_{\alpha}\left[\mathcal{D}^{-1}\right], \quad A_{\alpha \mathcal{D}}=A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}} .
$$

Inverting the discriminant

$$
\begin{gathered}
\mathcal{D}=\left(\alpha_{0}-\alpha_{1}\right)^{2}, \quad R_{\alpha \mathcal{D}}=R_{\alpha}\left[\mathcal{D}^{-1}\right], \quad A_{\alpha \mathcal{D}}=A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}} . \\
e_{0}:=\frac{X-\alpha_{0}}{\alpha_{1}-\alpha_{0}}, \quad e_{1}:=\frac{X-\alpha_{1}}{\alpha_{0}-\alpha_{1}}, \quad e_{i} e_{j}=\delta_{i j} e_{i}
\end{gathered}
$$

Inverting the discriminant

$$
\begin{gathered}
\mathcal{D}=\left(\alpha_{0}-\alpha_{1}\right)^{2}, \quad R_{\alpha \mathcal{D}}=R_{\alpha}\left[\mathcal{D}^{-1}\right], \quad A_{\alpha \mathcal{D}}=A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}} . \\
e_{0}:=\frac{X-\alpha_{0}}{\alpha_{1}-\alpha_{0}}, \quad e_{1}:=\frac{X-\alpha_{1}}{\alpha_{0}-\alpha_{1}}, \quad e_{i} e_{j}=\delta_{i j} e_{i}
\end{gathered}
$$

Let $\mathcal{G}_{\alpha \mathcal{D}}=\mathcal{G}_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}}$ denote the annular TQFT obtained by extending scalars to $R_{\alpha \mathcal{D}}$.

Inverting the discriminant

$$
\begin{gathered}
\mathcal{D}=\left(\alpha_{0}-\alpha_{1}\right)^{2}, \quad R_{\alpha \mathcal{D}}=R_{\alpha}\left[\mathcal{D}^{-1}\right], \quad A_{\alpha \mathcal{D}}=A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}} . \\
e_{0}:=\frac{X-\alpha_{0}}{\alpha_{1}-\alpha_{0}}, \quad e_{1}:=\frac{X-\alpha_{1}}{\alpha_{0}-\alpha_{1}}, \quad e_{i} e_{j}=\delta_{i j} e_{i}
\end{gathered}
$$

Let $\mathcal{G}_{\alpha \mathcal{D}}=\mathcal{G}_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}}$ denote the annular TQFT obtained by extending scalars to $R_{\alpha \mathcal{D}}$.

Theorem (A.)

Let $L \subset \mathbb{A} \times I$ be an n-component annular link with diagram D. Let $C_{\alpha \mathcal{D}}^{\mathbb{A}}(D)$ denote the chain complex obtained by applying $\mathcal{G}_{\alpha \mathcal{D}}$ to the cube of resolutions. Then the homology of $C_{\alpha \mathcal{D}}^{\mathbb{A}}(D)$ is a free $R_{\alpha \mathcal{D}}$-module of rank 2^{n}.

Inverting the discriminant

$$
\begin{gathered}
\mathcal{D}=\left(\alpha_{0}-\alpha_{1}\right)^{2}, \quad R_{\alpha \mathcal{D}}=R_{\alpha}\left[\mathcal{D}^{-1}\right], \quad A_{\alpha \mathcal{D}}=A_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}} . \\
e_{0}:=\frac{X-\alpha_{0}}{\alpha_{1}-\alpha_{0}}, \quad e_{1}:=\frac{X-\alpha_{1}}{\alpha_{0}-\alpha_{1}}, \quad e_{i} e_{j}=\delta_{i j} e_{i}
\end{gathered}
$$

Let $\mathcal{G}_{\alpha \mathcal{D}}=\mathcal{G}_{\alpha} \otimes_{R_{\alpha}} R_{\alpha \mathcal{D}}$ denote the annular TQFT obtained by extending scalars to $R_{\alpha \mathcal{D}}$.

Theorem (A.)

Let $L \subset \mathbb{A} \times I$ be an n-component annular link with diagram D. Let $C_{\alpha \mathcal{D}}^{\mathbb{A}}(D)$ denote the chain complex obtained by applying $\mathcal{G}_{\alpha \mathcal{D}}$ to the cube of resolutions. Then the homology of $C_{\alpha \mathcal{D}}^{\mathbb{A}}(D)$ is a free $R_{\alpha \mathcal{D}}$-module of rank 2^{n}.

Proof: Consider the following elements of $A_{\alpha \mathcal{D}}$,

$$
\begin{aligned}
& \bar{v}_{0}:=v_{0}=1, \quad \bar{v}_{1}:=\frac{v_{1}}{\alpha_{1}-\alpha_{0}}=\frac{X-\alpha_{0}}{\alpha_{1}-\alpha_{0}} \\
& \bar{v}_{0}^{\prime}:=v_{0}^{\prime}=1, \quad \bar{v}_{1}^{\prime}:=\frac{v_{1}^{\prime}}{\alpha_{0}-\alpha_{1}}=\frac{X-\alpha_{1}}{\alpha_{0}-\alpha_{1}}
\end{aligned}
$$

Inverting the discriminant

(a)

(b)

(c)

(d)

Inverting the discriminant

(a)

(b)

(c)

(d)
(a)
(b)

$$
\begin{aligned}
& \bar{v}_{0} \otimes e_{0} \mapsto 0 \\
& \bar{v}_{1} \otimes e_{0} \mapsto \bar{v}_{1} \\
& \bar{v}_{0} \otimes e_{1} \mapsto \bar{v}_{0} \\
& \bar{v}_{1} \otimes e_{1} \mapsto 0
\end{aligned}
$$

$$
\begin{aligned}
& \bar{v}_{0} \otimes \bar{v}_{0}^{\prime} \mapsto 0 \\
& \bar{v}_{1} \otimes \bar{v}_{0}^{\prime} \mapsto e_{0} \\
& \bar{v}_{0} \otimes \bar{v}_{1}^{\prime} \mapsto e_{1} \\
& \bar{v}_{1} \otimes \bar{v}_{1}^{\prime} \mapsto 0
\end{aligned}
$$

Inverting the discriminant

(a)

(b)

(c)

(d)
(a)
(b)

$$
\begin{aligned}
& \bar{v}_{0} \otimes e_{0} \mapsto 0 \\
& \bar{v}_{1} \otimes e_{0} \mapsto \bar{v}_{1} \\
& \bar{v}_{0} \otimes e_{1} \mapsto \bar{v}_{0} \\
& \bar{v}_{1} \otimes e_{1} \mapsto 0
\end{aligned}
$$

$$
\begin{aligned}
& \bar{v}_{0} \otimes \bar{v}_{0}^{\prime} \mapsto 0 \\
& \bar{v}_{1} \otimes \bar{v}_{0}^{\prime} \mapsto e_{0} \\
& \bar{v}_{0} \otimes \bar{v}_{1}^{\prime} \mapsto e_{1} \\
& \bar{v}_{1} \otimes \bar{v}_{1}^{\prime} \mapsto 0
\end{aligned}
$$

- From (a), we see that \bar{v}_{0} acts as e_{1} and \bar{v}_{1} acts as e_{0}.

Inverting the discriminant

(a)

(b)

(c)

(d)
(a)
(b)

$$
\begin{aligned}
& \bar{v}_{0} \otimes e_{0} \mapsto 0 \\
& \bar{v}_{1} \otimes e_{0} \mapsto \bar{v}_{1} \\
& \bar{v}_{0} \otimes e_{1} \mapsto \bar{v}_{0} \\
& \bar{v}_{1} \otimes e_{1} \mapsto 0
\end{aligned}
$$

$$
\begin{aligned}
& \bar{v}_{0} \otimes \bar{v}_{0}^{\prime} \mapsto 0 \\
& \bar{v}_{1} \otimes \bar{v}_{0}^{\prime} \mapsto e_{0} \\
& \bar{v}_{0} \otimes \bar{v}_{1}^{\prime} \mapsto e_{1} \\
& \bar{v}_{1} \otimes \bar{v}_{1}^{\prime} \mapsto 0
\end{aligned}
$$

- From (a), we see that \bar{v}_{0} acts as e_{1} and \bar{v}_{1} acts as e_{0}.
- From (b), \bar{v}_{0}^{\prime} acts as e_{0} and \bar{v}_{1}^{\prime} acts as e_{1}.

Inverting the discriminant

(a)

(b)

(c)

(d)

Inverting the discriminant

(a)

(b)

(c)

(d)
(c)

$$
\begin{aligned}
& \bar{v}_{0} \mapsto\left(\alpha_{0}-\alpha_{1}\right) \bar{v}_{0} \otimes e_{1} \\
& \bar{v}_{1} \mapsto\left(\alpha_{1}-\alpha_{0}\right) \bar{v}_{1} \otimes e_{0}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& e_{0} \mapsto\left(\alpha_{1}-\alpha_{0}\right) \bar{v}_{1} \otimes \bar{v}_{0}^{\prime} \\
& e_{1} \mapsto\left(\alpha_{0}-\alpha_{1}\right) \bar{v}_{0} \otimes \bar{v}_{1}^{\prime}
\end{aligned}
$$

Thank you!

Marta M．Asaeda，Józef H．Przytycki，and Adam S．Sikora．
Categorification of the Kauffman bracket skein module of I－bundles over surfaces．
Algebr．Geom．Topol．，4：1177－1210， 2004.
嗇 Dror Bar－Natan and Scott Morrison．
The Karoubi envelope and Lee＇s degeneration of Khovanov homology． Algebr．Geom．Topol．，6：1459－1469， 2006.
嗇 J．Elisenda Grigsby，Anthony M．Licata，and Stephan M．Wehrli．
Annular Khovanov homology and knotted Schur－Weyl representations． Compos．Math．，154（3）：459－502， 2018.
目 Mikhail Khovanov．
Link homology and Frobenius extensions．
Fund．Math．，190：179－190， 2006.
國 Mikhail Khovanov and Louis－Hadrien Robert．
Link homology and Frobenius extensions II．
2020.

Preprint：arXiv：2005．08048．
围 Lawrence P．Roberts．
On knot Floer homology in double branched covers．

Geom. Topol., 17(1):413-467, 2013.
埥 S. Wehrli.
A spanning tree model for Khovanov homology.
J. Knot Theory Ramifications, 17(12):1561-1574, 2008.

