

Reeb Foliation: Foliation as the level sets of $\sqrt{1-r^2}e^z$.

 $T = \{r, \theta, z | r \le 1\}/(z \sim z + 1)$

Foliation (M, ξ) is Reebless if the foliation has no reeb components.

Overtwisted Disk: $T = \{r, \theta, z | r \le \pi\} / \sim, D' = \{z = \epsilon r^2\} \subseteq T$

 $\alpha = \cos r \, dz + r \sin r \, d\theta$ induces a foliation on D' (The foliation given by $\xi \cap TD' \subseteq TD'$): $\theta = \theta_0 - 2\epsilon \log \sin r$ away from r = 0 (singular points)

(global) vector field ~ S

V':I-mfol $J. [\Sigma] = [(e(g)), [\Sigma]$

Contact Structure (M, ξ) is Tight if it has no embedded overtwisted disks.

Thm. For a closed, oriented 3-mfd Homotopy classes of plane fields⇔ Isotopy classes of overtwisted contact structures

closed

Thm. Reebless foliation or Tight positive contact structure ξ , 0 - 10 CmS embedded surface $\Sigma \subseteq M$ which is not a sphere. The formula ξ is the sphere of the sphere $|(e(\xi), [\Sigma])| \leq -\chi(\Sigma).$

GH2(m) GH2(m). Cor. Only finite many elements in $H^2(M, \mathbb{Z})$ can be the Euler class of some plain fields.

Taut and Weak symplectically semi-fillable:

Foliation ξ is taut if \exists a closed curve intersects with all leaves transversally.

Contact structure ξ is WSSF if (M, ξ) is a component of (M', ξ') which is dominated by symplectic manifold (X, ω) ($\omega(v, w) > 0$, (v, w) : oriented basis of ξ') .

Contact structure ξ is WSSF if (M, ξ) is a component of (M', ξ') which is dominated

by symplectic manifold (X, ω) ($\omega(v, w) > 0$, (v, w) : oriented basis of ξ') WSSF \Rightarrow Tight, Taut \Rightarrow Reebless. $\partial \chi = \mathcal{M}$. $d\alpha = \mathcal{M} \partial \chi$.

Space of plane fields \Leftrightarrow Space of \mathbb{P}^2 valued functions on M. (The normal vector of $\xi_x \subseteq T_x M$)

Special Foliation: $S^2 \times S^1$, $\zeta = \text{Ker}(d\theta)$ given by $S^2 \times \{pt.\}$ Thm. Oriented C^2 foliation ξ on oriented 3-mfd M, other than $(S^2 \times S^1, \zeta)$, can be approximated by a positive/negative contact structure.

Example: \mathbb{T}^3 , $dz + t(\cos 2\pi nz \, dx + \sin 2\pi nz \, dy)$

Why is $(S^2 \times S^1, \zeta)$ special? Thm. If (M, ξ) contains 2-sphere $S \subseteq M$ and $T_x S = \xi_x$ for any $x \in S$. Then $(M, \xi) \cong (S^2 \times S^1, \zeta)$ Any confoliation of $S^2 \times S^1$ is diffeomorphic to ζ in a C^0 -nbh.

(2) DO

 $\alpha \Lambda d\alpha \ge 0 (\leq 0).$

Proof of the theorem.

Holonomy along a closed curve γ , which is tangent to ξ : the following map $\varphi: I \to I, x \mapsto y$ ($I \times S^1$ embeds into M, S^1 into γ, I transverse to ξ)

Holonomy φ is: Nontrivial, if Linearly nontrivial, if $\varphi(\phi) \neq 1$ Attracting/Repelling, if $1 \varphi(x) \uparrow \leq 1 \times 1$. Sometimes Attracting/Repelling, if $\{X_i\}$ from both side $\{X_i\}$ from both sid

(a) We can C^0 perturb it into a foliation which has only finite many closed leaves.

Def. A minimal set: closed union of leaves which contains no closed union of leaves as a proper subset.

For a foliation after (a), M consists of: Finite many closed leaves and some exceptional minimal sets (Minimal set which is neither closed leaf nor the entire mfd) > linearly nontrivial Or, *M* itself is a minimal set (ξ is minimal). holonomy.

If M is not minimal: it has linearly nontrivial holonomy (Sachsteder, 1965) If *M* is minimal:

(a') Approximate ξ by a fiberation over S^1 (Tischler)

(a'') The fiber is not S^2 ! Approximate it by foliation with 2 closed leaves.

anda > 0

appox. by

(b) Thm. (M, ξ) is C^k -foliation, γ tangent to ξ , has linearly nontrivial holonomy. Then $\exists N \subset N' \subset M$, ξ can be C^k -deformed into a confoliation, which is positive contact in N, unchanged in N'^C , diffeomorphic to ξ in N^C .

 (\mathbf{P})

(c) If confoliation ξ has contact region $H(\xi)$, and any x connect to $H(\xi)$ by some path tangent to ξ . ation ξ has e... be deformed into a contact structure. $X \in M(A \cap A \cap A) \times Y \cap A$ $X = *(A \cap A \cap F)$ $H = *(A \cap A \cap F)$ Then ξ can be deformed into a contact structure.

 $\int \frac{\partial^2 f}{\partial f} f = \star (d \wedge df)$ $\int (f \circ f) = d \cdot f = \star (d \wedge dp + p \wedge dp)$ Thm. Reebless (Taut) foliation ξ approximated by a contact structure ξ' , then ξ' is tight (WSSF). The inverse is not always true!

tight &

Foliation > Reebless > Tant

Build Symplectic Manifolds by Handle Attachments (V, W) OV (and basis 5.
(M,ξ) weakly filled by $(X,\omega): M = \partial X, \ \omega(v,w) > 0.$ (M,ξ) strongly filled by $(X,\omega): M = \partial X, \exists$ Dialating vector field v near $\partial X: \downarrow_{\omega} \top M$
$\mathcal{L}_{\nu}\omega = \omega$, (Then $\alpha := \iota_{\nu}\omega$, $d\alpha = \omega$ and $\alpha \wedge d\alpha = \frac{1}{2}\iota_{\nu}(\omega \wedge \omega)$ is volume form.)
And $\xi = \operatorname{Ker} \alpha$. $dd = dl_w w = L_w w = w$. of M .
Strongly filled \Rightarrow Weakly filled. $d \wedge dd (W - u - u') = w (v - w) w (u, u')$
Thm. (X, ω) weakly fills (M, ξ) , then $\exists (X, \omega')$ strongly fills it.
The bosis of & M homeway sphere.
* Esta nyprices s
Thm. (X_1, ω_1) (convex) strongly fills (M, ξ) , (X_1, ω_2) strongly fills (M, ξ) with vector field points into X (Concave strongly). Then
$X = X_1 \cup_M X_2$ has symplectic form $\omega, \omega _{X_1} = \omega_1$, and away from a nbn of $\partial X_2, \omega _{X_2} = c\omega_2$.
Attaching handles! (D^{*}) $(D^{*$
<i>k</i> -handle attached to <i>n</i> -mfd: A copy of $D^k \times D^{n-k}$ attached to ∂X along $\partial D^k \times D^{n-k}$.
DP=2pts -houdle
Handle decomposition of a (closed, connected) 4-mfd: - A 0-handle. D^{4} $\partial D^{7} = S^{7} \sim IR^{2} \cup I D^{6}$
- Some 1-handles: Connect a pair of balls (In S^4) to each other. $\nabla^2 \not{S} \otimes \nabla^2$
- Some 2-handles: Attach along some thickened knots in ∂X_1 , with framing.
- 3-handles and 4-handles are uniquely determined.
Kirby diagram: $OOOO = 200$
SAV - NETL
Thm (Elishaberg, Weinstein) (X, ω) with strong or weak convex boundary.

- Attaching 1-handles to X, or - Attaching 2-handles: A knot K, $T_x K \subset \xi_x$. Normal bundle of ξ in TM is a calononical framing (Contact framing) K. Laboration knot

- Attaching 1-handles to X, or
- Attaching 2-handles: A knot K, $T_x K \subset \xi_x$. Normal bundle of ξ in TM is a calononical framing (Contact framing). K: Lagrangian knot.

Attaching the 2-handle with framing 1 less than the contact framing.

Then the symplectic form extended to X', and the new boundary is still strong/weak convex!

Thm (Elishaberg, Etnyre) Compact symplectic mfd (X, ω) with weak boundary can embed into a closed symplectic mfd (X', ω') .