Prelims:
(Def): n-strand Braid Group:

$$B_n := (\sigma_1, ..., \sigma_{n-1} \mid \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j (1i - j | 22))$$

... where each σ_i is the Antin generator:
 $\sigma_i = \frac{\sigma_i \sigma_i \sigma_j \sigma_i \sigma_j \sigma_i \sigma_j (1i - j | 21)}{\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j (1i - j | 21)}$

-Word Problem ! Let w & w' be words in the generators of Ba, & let OCWS denote the bossid of w, then is OCWS = OCW'S? - Conjugacy Problem : OCW) ~ OCW'S?

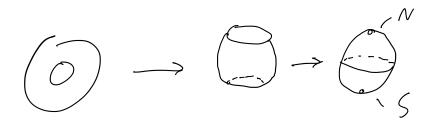
Auswar! word problem ? Yes! conjugacy problem? Not Quite!

... then we project of onto the A× E1/2 3 ".l..." of A×I, like:

... then we project to onto the H×212, "slice" of A×I, like: A× {1/2}

. Note : Conjugate braids have isotopic closures in AxI.

... then we close up the inner & outer circles of A x E1/23, so we have our diagram D in 5² EN, 5 3:



... if we forget about N, we have a diagram D in $S^2 - ES3 = IR^2$ and we can form the ordinary IChousenear complex of D, denoted CK4....

(Def): K-grading: algebraic intersection of the oriented resolutions of & generating CKh and X

=> The k-grading gives as a filtration:

$$0 \leq \ldots \leq F_{n-1}(D) \leq F_n(D) \leq \ldots \leq (kh(D))$$

$$\sim$$
 Sufficed another Klormor homology groups:
 $S(ch'(L; j, k) = H'\left(\frac{\mathcal{F}_{k}(D; j)}{\mathcal{F}_{k-1}(D; j)}\right)$

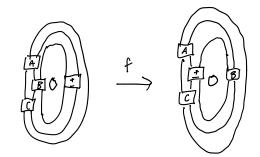
·Thrm: Sth(&)=Sth(1) implies o.1.

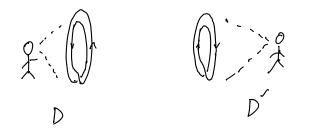
$$(Def): \underbrace{\text{Reverse braid}}_{\text{of For } \sigma \in B_n, \text{ where}}_{\text{of } \sigma, \text{ denoted}}$$

$$\sigma = \sigma(w), \text{ then the reverse of } \sigma, \text{ denoted}$$

$$\sigma^{-}, \text{ is :}$$

$$\sigma^{-} = \sigma(w^{-})$$





Thim: Let ore Bn, then Skh (6) * Skh (6r). proof. Given & & & and respective projections D and D' onto A × E1/2 }, there is a bijection correspondence between the oriented recolutions of P&D", se SKh(∂) ~ SKh(∂).

· Corollary:] infinitely many pairs (0,0') s.t. $\hat{\sigma} \sim \hat{\sigma}' \quad b_{n+1} = Skh(\hat{\sigma}) \cong Skh(\hat{\sigma}').$

PRoof. Suppose $\widehat{\sigma} \otimes \widehat{\sigma}'$ are braids related by a flype, then $\widehat{\sigma}'$ is isotopic to $\widehat{\sigma}'$ in $A \times I$, so $\widehat{\sigma}'$ is a transvese univer to $\widehat{\sigma}$. Thus, by theorem, $Slch(\widehat{\sigma})^{\widehat{\sigma}}Slch(\widehat{\sigma}')$.

... (Birman & Menasco) There are infinitoly many distinct price of braids related by a flype s.t. the flype changes the conjugacy class.

... but maybe ?

Quick Notes Page 6

· Open Questions:

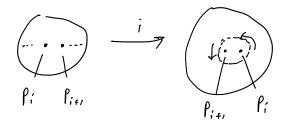
• bemma :
$$\Psi(L)$$
 is a cycle.
Proof. d on $CKh(Lx)$ is the sum of
maps for all edges \mathcal{G} with \mathcal{A} is their
initial and. Since $\Psi(L) \in V^{\otimes n} = CKh(Lo)$,
and when O -res of t -crossing becomes a
 1 -res, the two circles marge:

(Def):
$$\Psi(L)$$
: The homology class of $\Psi(L)$.
* Thm: $\Psi(L) \in [Ch(L)]$ is an invaniant of transverse
i.inks $L \in (S^3, S_{646})$ up to sign.

· (Def): Right:
$$\mathcal{T}$$
 is right of \mathcal{T}' if, after
they are pulled tight, orientation induced by
tangent vectors $\frac{dY}{dt}\Big|_{t=0} \times \frac{d\mathcal{T}'}{dt}\Big|_{t=0}$ agrees
with the standard orientation on $D \subset C$.

• The:
$$B_n \cong MCG(D_n)$$

• ... identify each σ_i with $D_n \xrightarrow{i} D_n$
defined by :



i = id on Dn except for a small disc containing P: k li+1, on this disc it's a ccw-rotation.

=> braids act on Dn from the right, so Bn acts on admissible arcs up to isotopy. (8) or Merely convention, could choose negative Artin gementors.

(Def): Right Veering: OE Bn right-veering if, V V, (V)or is right of V when pulled tight. (Left-veering same deal)

... follons from Alexander's Lemma & fact that o isotopic to a map that fixes all "nice" admissible arcs.

The : if
$$\varphi$$
 is in f right-verify,
then $\psi(\hat{\sigma}) = 0$.
Corollary : If $\psi(\hat{\sigma}) \neq 0$ and $\psi(m(\hat{\sigma})) \neq 0$
is a f

· Corollary: If
$$\psi(\hat{\sigma}) \neq 0$$
 and $\psi(m(\hat{\sigma})) \neq 0$,
then $\sigma \cdot A$.

$$F_{i}|\text{function of CKh by K-gending yields a}$$

$$Speatral Sequence r.t.:$$

$$F_{1} = SKh(L), F_{00} \cong Kh(L)$$

- A computation of the spectral sequence
shows
$$S(h(\hat{\sigma}))$$
 collepses immediately and
 $\psi(\hat{\sigma})$ survives.

• Thrm (Roberts): Skh symmetric under taking mirrors; Skh i,jik (L) = Skh i,-i,-k (m(L)), and the spectral sequence conveying to Kh(C), i filtered chain isomorphic to that induced on Skh *,*,* (m(L)) by histor differentials en Skh *,*,* (m(L)).

· Note: Roberts defines "Khovener Skein homology", which is an equivalent construction.

Sources: (Roberts): L.P. Roberts. On Knot Flour homology in double branched covers: (J.A. Baldwin & E. Grigsby): "Categorified invariants & the braid group" (O. Plamanevskaya): "Transverse knots & Khovanov homelogy."