Annular Khovanov Lee Homology

J. ELISENDA GRIGSBY, ANTHONY M. LICATA, AND STEPHAN M. WEHRLI

1 Introduction

We are going to see a theorem on an invariant of Annular Khovanov Homology.

We will try to understand the Khovanov-Lee complex of an oriented link, L, in a thickened annulus, $A \times I$, has the structure of a $(Z \oplus Z)$-filtered complex whose filtered chain homotopy type is an invariant of the isotopy class of $L \subset(A \times I)$.

We will prove the theorem next time.

MAIN THEOREM

Let $L \subset(A \times I)$ be an annular link with wrapping number w, let o be an orientation on L, and let $t \in[0,2]$.
$1 d_{t}(L, o)$ is an oriented annular link invariant.
$2 d_{1-t}(L, o)=d_{1+t}(L, o)$ for all $t \in[0,1]$.
$3 d_{0}(L, o)=d_{2}(L, o)=s(L, o)-1$.
4 Viewed as a function $[0,2] \longrightarrow \mathbb{R}, d_{t}(L, o)$ is piecewise linear.
Moreover, letting

$$
m_{t}(L, o):=\lim _{t \rightarrow 0^{+}} \frac{d_{t+\epsilon}(L, o)-d_{t}(L, o)}{\epsilon}
$$

denote the (right-limit) slope at t, we have $m_{t}(L, o) \in\{-w,-w+$ $2, \ldots, w-2, w\}$ for all $t \in[0,2)$.

5 Suppose (L, o) and ($L^{\prime}, 0^{\prime}$) are non-empty oriented annular links, and F is an oriented cobordism from (L, o) to $\left(L^{\prime}, o^{\prime}\right)$ for which each component of F has a boundary component in L . Then if F has a_{0} even-index annular critical points, a_{1} odd-index annular critical points, and b_{0} even-index non-annular critical points, then

$$
d_{t}(L, o)-d_{t}\left(L^{\prime}, o^{\prime}\right) \leq\left(a_{1}-a_{0}\right)-b_{0}(1-t)
$$

6 Suppose $(L, o),\left(L^{\prime}, o^{\prime}\right)$ and F are as in (5) above, and suppose that in addition each component of F has a boundary component in L^{\prime}. Then

$$
\left|d_{t}(L, o)-d_{t}\left(L^{\prime}, o^{\prime}\right)\right| \leq\left(a_{1}-a_{0}\right)-b_{0}(1-t) .
$$

2 Annular Link

Let A be an oriented annulus, and let $I=[0,1]$.

We will use the identification, that $I \times I \cong D^{2}$.

Consider a link $L \subset S^{3}$, and assume that L does not intersect the standard circle $(z-$ axis $) \cup\{\infty\}$.

Now, consider the complement of this imbedded standard unknot in S^{3}. which is $S^{3}-N\left(S^{1}\right)$ which is a solid torus T.

Now we know

$$
T=S^{1} \times D^{2} \cong S^{1} \times I \times I \cong A \times I .
$$

We can think of this solid torus as a thickened annulus, as $L \subset A \times I$.

Now we consider the projection of L (any generic representation in the isotopy class of L) on $A \times\left\{\frac{1}{2}\right\}$ and denote the projection by $P(L)$.
$P(L)$ is the annular link diagram for L, in A. We identify A with $S^{2} \backslash\{X, O\}$ where X and O are two
punctures in S^{2} each representing the two boundary components of the annular A.

Hence we can have the diagram $P(L) \subset S^{2} \backslash\{X, O\}$.

Note that if we forget about $\{X\}$, then $P(L)$ could be thought of as a diagram in $S^{2} \backslash\{O\} \cong \mathbb{R}^{2}$.

3 Annular Link Cobordism

Oriented Link Cobordism between oriented links (L, o) and $\left(L^{\prime}, o^{\prime}\right) \subset A \times I \subset S^{3}$; is a smooth, compact, properly embedded surface $F \subset S^{3} \times I$ with

$$
\partial F=\left((L, o) \subset-S^{3} \times\{0\}\right) \sqcup\left(\left(L^{\prime}, o^{\prime}\right) \subset S^{3} \times\{1\}\right)
$$

considered upto isotopy rel. boundary.

We call F, an annular cobordism if $F \cap(U \times I)=\phi$ where U denotes the standard embedded circle $(z-$ axis $\cup\{\infty\})$.

An annular link cobordism F is said to be generic if the projection map

$$
p: S^{3}-U \longrightarrow I
$$

restricted to F is Morse with distinct critical values.

An annular movie of a link is a smooth, 1 -parameter family of curves, $D_{t} \subset S^{2} \backslash\{O, X\} ; t \in[0,1]$ called annular stills, satisfying

- For all but finitely many $t \in[0,1], D_{t}$ is a link diagram.[immersed curve equipped with over/under crossing]
- At each of the finitely many critical levels $t_{1}, t_{2}, \ldots t_{k}$, the diagrams undergoes a single elementary string interaction, namely: Birth, Deaths, Saddles and Reidemeister moves.

Since annular cobordisms are assumed to be compact hence we can consider all annular cobordisms to be imbedded in $(A \times I) \times I \subset\left(S^{3} \backslash N(U)\right) \times I$.

Hence an annular movie may be viewed on $A \subset S^{2} \backslash\{O, X\}$.
We end with a Lemma:

Lemma

Any annular link cobordism can be represented by an annular movie.

We will say that planar isotopy of $P(L)$ is annular if locally the move is supported in a disk away from $\{O, X\}$.

If locally it cannot be made disjoint then we call it nonannular.

By transversality we can say saddle (odd-index critical points) can be assumed to be annular.

There might exist planar isotopy which is non-annular.
Similarly for Reidemeister moves, it is possible that it might be non-annular move.

Fix an arc $\gamma \in S^{2}$ connecting X and O such that the arc misses every crossing of $P(L)$.

We call a circle C trivial if the algebraic intersection number of C with γ is even. On the other hand, it's non-trivial if it's odd.

Alternatively we can say, that a circle C is trivial if it bounds a disk in $S^{2} \backslash\{O, X\}$.

A circle C is non-trivial if it fails to bounds a disk in $S^{2} \backslash\{O, X\}$.

Even-index critical Points
A Birth(death) move is annular if there is an addition(deletion) of a trivial circle. If it is the addition(deletion) of a nontrivial circle then it is non-annular.

4 Annular Khovanov-Lee complex

For $P(L) \subset S^{2} \backslash\{O, X\}$, we want to define a $\mathbb{Z} \oplus \mathbb{Z}$ filtered chain complex.

We give a partial order to $\mathbb{Z} \oplus \mathbb{Z}$ as $(a, b) \leq\left(a^{\prime}, b\right)$ if and only if $a \leq a^{\prime}$ and $b \leq b^{\prime}$.

Let C be a chain complex. We call C a $\mathbb{Z} \oplus \mathbb{Z}$ filtration if for each $(a, b) \in \mathbb{Z} \oplus \mathbb{Z}$, we have a subcomplex $F_{(a, b)} \subset C$, and whenever $(a, b) \leq\left(a^{\prime}, b^{\prime}\right)$ then $F_{(a, b)} \supset F_{\left(a^{\prime}, b^{\prime}\right)}$.

We form the bi-graded Khovanov-Lee complex

$$
C=\bigoplus_{i, j \in \mathbb{Z}} C_{i j}
$$

along with an endomorphism $\partial^{L E E}: C \longrightarrow C$, where $\partial^{L E E}=\partial+\Phi$, where both have degree 1 with respect to i (homological), and ∂ has degree 0 in ' j^{\prime} (quantum) and Φ has degree 4 in ${ }^{\prime} j^{\prime}$.

As we already know,

$$
\partial^{2}=0 ; \partial \Phi+\Phi \partial=0 ; \Phi^{2}=0
$$

We already know that the homology of the complex (C, ∂) OR $\left.\left(C, \partial^{L E E}\right)=(C, \partial+\Phi)\right)$. are invariants of L .

5 Remember X

Till now we have considered our link diagram in $S^{2} \backslash\{0\} \cong$ \mathbb{R}^{2} and have our complex C (a finite dimensional bigraded complex.)

Remembering the data of X, we obtain a 3rd grading on the underlying vector space of the K-L complex.

We have a basis of C which corresponds $1-1$ with oriented Kauffman states of $P(L)$.
We identify a " v_{+}" marking on a component of a Kauffman state with a counterclockwise orientation of that component.

Define a "k" grading of a basis element c as the algebraic intersection number of the corresponding state with a fixed arc missing all crossings of $P(L)$.
s \& w are the two different k grading.

$$
\begin{array}{ll}
v_{+}=1 & w_{+}=1 \\
v_{-}=x & w_{-}=x
\end{array}
$$

in on a

$$
\begin{array}{ll}
v_{+} \otimes v_{+} \longrightarrow 0 * & v_{-} \otimes v_{-} \rightarrow 0 \\
w_{+} \otimes w_{+} \longrightarrow w_{+} & v_{-} \otimes w_{-} \rightarrow 0 \\
v_{+} \otimes w_{+} \longrightarrow v_{+} & w_{-} \otimes v_{-} \longrightarrow 0 \\
w_{+} \otimes v_{+} \longrightarrow v_{+} & w_{-} \otimes w_{-} \longrightarrow 0
\end{array} \quad \begin{array}{ll}
& v_{-} \otimes w_{+} \longrightarrow w_{-} \\
v_{+} \otimes v_{-} \longrightarrow w_{-} & v_{-} \otimes w_{+} \rightarrow v_{-} \\
v_{+} \otimes w_{-} \longrightarrow 0 * & w_{-} \otimes v_{+} \longrightarrow 0 \\
w_{+} \otimes v_{-} \longrightarrow v_{-} & w_{-} \otimes w_{+} \longrightarrow w_{-} \\
w_{+} \otimes w_{-} \longrightarrow w_{-} & w_{-}
\end{array}
$$

\triangle on ∂

$$
\begin{aligned}
& v_{+} \rightarrow v_{+} \otimes w_{-} * \\
& w_{+} \rightarrow w_{-} \otimes w_{+}+w_{+} \otimes w_{-}=v_{-} \otimes v_{+}+v_{+} \otimes v_{-} \\
& v_{-} \rightarrow v_{-} \otimes w_{-} \\
& w_{-} \rightarrow w_{-}
\end{aligned}
$$

Lemma

$\partial^{L E E}=\partial_{0}+\partial_{-}+\Phi_{0}+\Phi_{+}$, where the ($\left.\mathrm{i}, \mathrm{j}, \mathrm{k}\right)$ degrees are given by:

- $\left.\operatorname{deg}\left(\partial_{0}\right)=(1,0,0)\right)$
- $\left.\operatorname{deg}\left(\partial_{-}\right)=(1,0,-2)\right)$
- $\left.\operatorname{deg}\left(\Phi_{0}\right)=(1,4,0)\right)$
- $\left.\operatorname{deg}\left(\Phi_{+}\right)=(1,4,2)\right)$

Corollary

The j and $j-2 k$ gradings on C endow $\left(C, \partial^{L E E}\right)$ with the structure of a $\mathbb{Z} \oplus \mathbb{Z}$ - filtered complex.

Proof. From the previous lemma, $\partial^{L E E}$ is non decreasing for j and $j-2 k$.
Consider the subcomplex

$$
F_{(a, b)}=S P A N_{\mathbb{F}}\left\{x \in C \mid g r_{(j, j-2 k)}(x) \geq(a, b) .\right\}
$$

Easy to check it is a $\mathbb{Z} \oplus \mathbb{Z}$ - filtration for j and $j-2 k$ gradings on C .

Let x be a (j, k) - homogenous basis element of C , and let $t \in[0,2]$.

Define

$$
j_{t}(x)=j(x)-t . k(x) .
$$

Corollary

For every t, j_{t} endows ($C, \partial^{L e e}$) with the structure of a (discrete, bounded) \mathbb{R} filtered complex equipped with a finite filtered graded basis.

Proof. Same proof as before.
The j_{t} grading on C is still non-decreasing.

$$
F_{a}=\left\{x \in C \mid j_{t}(x) \geq a\right\} .
$$

This gives us the $\mathbb{Z} \oplus \mathbb{Z}$-filtered complex.

6 Annular Rasmussen invariants of an annular link

We have $P(L) \subset S^{2} \backslash\{O\} \cong \mathbb{R}^{2}$ and o is an orientation on L, then Lee describes $s_{o} \in C(P(L))$ whose homology class is non-zero.

Rasmussen used the \mathbb{Z} - filtration induced by the j grading on C to define an invariant

$$
s(K) \in 2 \mathbb{Z}
$$

where

$$
s(K)=g r_{j}\left(\left[s_{o}\right]\right)+1 \in 2 \mathbb{Z} .
$$

Later Beliakova, Wehrli extended the result to

$$
s(L, o) .
$$

If \bar{o} is just the opposite orientation of o, then the result does not change.

Define:

$$
d_{t}(L, o)=g r_{j_{t}}\left(\left[s_{o}\right]\right) \in \mathbb{R}
$$

Lemma

Let $L \subset S^{2} \backslash\{O, X\}$.
Consider $P(L) \subset S^{2} \backslash\{O\}$ and $P^{\prime}(L) \subset S^{2} \backslash\{X\}$.
There exists an involution,

$$
\theta:\left(C\left(P(L), \partial^{L E E}\right)\right) \longrightarrow\left(C\left(P^{\prime}(L), \partial^{L E E}\right)\right)
$$

inducing an isomorphism on homology.

It basically exchanges $v_{ \pm}$to $w_{ \pm}$

Now we will understand the MAIN THEOREM

MAIN THEOREM

Let $L \subset(A \times I)$ be an annular link with wrapping number w, let o be an orientation on L, and let $t \in[0,2]$.
$1 d_{t}(L, o)$ is an oriented annular link invariant.
$2 d_{1-t}(L, o)=d_{1+t}(L, o)$ for all $t \in[0,1]$.
$3 d_{0}(L, o)=d_{2}(L, o)=s(L, o)-1$.
4 Viewed as a function $[0,2] \longrightarrow \mathbb{R}, d_{t}(L, o)$ is piecewise linear.
Moreover, letting

$$
m_{t}(L, o):=\lim _{t \rightarrow 0^{+}} \frac{d_{t+\epsilon}(L, o)-d_{t}(L, o)}{\epsilon}
$$

denote the (right-limit) slope at t, we have $m_{t}(L, o) \in\{-w,-w+$ $2, \ldots, w-2, w\}$ for all $t \in[0,2)$.

5 Suppose (L, o) and ($L^{\prime}, 0^{\prime}$) are non-empty oriented annular links, and F is an oriented cobordism from (L, o) to $\left(L^{\prime}, o^{\prime}\right)$ for which each component of F has a boundary component in L . Then if F has a_{0} even-index annular critical points, a_{1} odd-index annular critical points, and b_{0} even-index non-annular critical points, then

$$
d_{t}(L, o)-d_{t}\left(L^{\prime}, o^{\prime}\right) \leq\left(a_{1}-a_{0}\right)-b_{0}(1-t)
$$

6 Suppose $(L, o),\left(L^{\prime}, o^{\prime}\right)$ and F are as in (5) above, and suppose that in addition each component of F has a boundary component in L^{\prime}. Then

$$
\left|d_{t}(L, o)-d_{t}\left(L^{\prime}, o^{\prime}\right)\right| \leq\left(a_{1}-a_{0}\right)-b_{0}(1-t) .
$$

