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Brief intro to Legendre ian andTransverse knots
Recall i A contact structure E. on R

'
is a 2-plane field given

locally as Her a where a is a l- form satisfying anda40 .

Ex : Degstdheerftt - ydx) Dgsym- fer lolz t r'd G)
= span {2, ,2×ty2,} = Pan { Ter , r'd , -2,}

from Etnyre's
Leg .

andTransversal
knots

Given a contact structure E. on R
'

, an embedding
i : →R

'
we have 3 cases :

① its ') is tangent to g → # its ') a Ex tix)

② its
') is transverse to g -s ⇐ i Cs ' )④ Ex -

- Tx R
'
tix)

③ i (5) is sometimes tangent , sometimes transverse
we call ① a Legendarium knot and ② a transverse knot
①

*
x.

*"

÷÷÷÷÷:



Equivalence of links :
Def : A Legendrian Transverse isotopy is an

isotopy through a family of Leg . Transverse) links
Fact : F knots that are smoothly isotopic but not

Leg . (transversely) isotopic
0

Fact : Any smooth link can be C approximated
by a tegendrian link

Legendrian links in R
'

, Estd)
Front projection IT : R

'
→ xz -plane

Lagrangian projection it .

- RIs x y
-plane

Properties of Front projections :
-

no vertical tangencies dx=O ⇒ da - O
- recovery word . by y-

-d.IT
- slope of overcrossing more negative

- Reed
. moves given by
-←I #←¥

RI R2 K3

\



Properties of Lagrangian Projections o

- recover z-coord by E- zotfoy x'6)do
- Must satisfy →
① yco) x' lo) do -O CEE
-4) got x' B)DO# 9.

or o. ,o , corresp . to acrossing-Partial Reidemeister mores :

Ki and Ka are Legendrian isotopic only if their
Lagrangian projections are related by L2 and L3 .

=← →

L2 L3
\

Classical invts of Leg . links
• Thurston - Bennequin # - in HR? esstd) given by
linking number of L with small pushoff in 2. direction .

tbh)- writhe ( TCL)) - Il# of cusps)- writheW/
Exi

t t

thief - I 1-614=-2 tbl D= - l tbh) --2

Rotation # raft ( O - U) - windings (L)



Transverse links
-

Front projection :
- no downward vertical tangencies f f
- no crossings of the farm Yy

Thur (2.9 in Etnyre) Any diagram satisfying the above 2 conditions
gives a transverse knot in (R'Gst)

.

Two diagrams represent
the same transverse isotopy class if and only if they rave
related by the moves below

-

T3

Ex : we X X✓ ←

Classical int :

self linking sl (T) = writhe TILT)
Transverse Linhas in UR', 5 sym)

!•⑦
↳ 5sym-trerdz.ir'd§

Ex :

① ⑥



Markov Moves for Transverse Links

Def : A transverse link Le CR? Gym) is a geometric braid
if 201L> 0

Them (Benneqwin ,
'

83) : Any oriented transverse link
is transverse isotopic to the closure of a braid

Them(OverKor and Sherohis kin '02) : Two braids B. , 82
represent transversalby isotopic links if and only
if we can pass from 8 ,

to Ba by
'

conjugation , positive Markov moves and inverses

l l l l I
-01 II µ →
I

↳→ '÷,
" 4¥I-A ¥

Conjugation Pos
.
stabilization

(MD (Mzt)

Notation :
• Sis S

'
u . . . .

U S
'

•Given L : sit
.
→ ④35syn), write LELE , t)



Defi A transversal isotopy L isxI+→R
'

is
monotone near the axis if I t

,
s

. . . .
stir EI
-

such that :

D ft : I ! si es such that L
"

(Oz) - { (s. ,t .), . .. , Gir ,#B
2) In every nbhd of Gi ,ti) .

L is given by
X-- T- 35, ye ST

- S3
, z
- Zi is

for T coordinate on I centered at ti and
s a cord . onS centered at s :

L is monotone everywhere if
Lt is a geometric braid for # It. . .. ..tw}
and monotone near the axis

Goal i Make every isotopy monotone
everywhere

Note ; Eig.
I represents a positive stabilization



Steps :p show L can be perturbed
so as to be monotone near the axis

2) Upgrade L to be monotone everywhere

1) Replace every small nbhd of pets .- ti) c- ECO
.)

by fig I
. As long as U is sufficiently small, we can ensure

that Lt is transverse .

Specifically , 2£ > E near Oz and can
choose U small enough that rigs < E
so that 3¥ - r

-394
↳
so

2) Need to make ↳ a braid for #ti
Def: A bad zone of L is anywhere L is not a braid
ive. any connected component in SxI sit . 201

We call a Laddie V size if
① Vt : = (sxt) n V is connected for all TEI

⑦ The total increment of 0 along V
is less than 2M



Ish.gg#ewoLfnona6adz-oreV
it

¥
'

{ Go .to)EV / they
,

hortest segment between LG..to) and qsn↳
intersects

,Lf , to) at (s . .to} 0

Equivalently , points where LIV) is an undercrossing
in the Oz-projection

Lemma i Can eliminate simple non - shadowed
bad zones

Note: z-cord
fixed

bad I
2-one

Lemma : Can
"wrinkle

"

a bad zone in a small
nbhd U of a smooth curve LEV so that
E >3943¥ > O in that nbhd

Yaa did
ya,

Morally : out a bad zone along asmooth curve he sat



Need to examine singularities of
projection of L onto Oz - cylinder :
o
.

Generic singularities← crossings
I
. Lt meets z-axis (as in fig D
2 . Lt is a unique ordinary tangency pt (T 2)
I. Lt has aunique triple pt CT3)
A sing . is positive if 2¥70 for every
pit of Lt projecting onto it and
non-positive 01W .

A sing.

is bad if there is a negative arc shadowed
by some other arc

Lemma : We can perturb all bad non-positive
singularities of type e) and (3)

Tf
,

impossible §
w

-

badzones shadowed
by bad zones



Algorithm :

Given L monotone near the axis with
bad zones V.

. . . . , Vn we eliminate bad zones

successively via the following steps .
1) Eliminate bad non-positive singularities of
Type (2) and (3)
Denote the shadows of Vi on V

, by h . le. . . . his

2) Wrinkle along components of bad zones Vi
shadowing V, as in fig .

66

3) Wrinkle V . wherever it's shadowed to get
non shadowed bad zones → corresponding to Vi



4) Wrinkle new bad zones if needed
to make sure they're simple

5) Apply fig . 3 to get rid of non- shadowed
bad zones .

G) Repeat for successive V;

Note
'

. At each step , we wrinkle awayfrom tangencies and triple pts ,
so we can make sure no new shadow
appears .


