Brief intro to Legendrian and Transverse knots
Recall: A contact structure ξ on \mathbb{R}^{3} is a 2-plane field given locally as $\operatorname{ker} \alpha$ where α is a 1 form satisfying $\alpha \wedge d \alpha \neq 0$.

$$
\begin{aligned}
& \left.E_{x:} \cap \xi_{s+d}=\operatorname{ker}(d z-y d x) \quad i\right) \xi_{\text {sym }}=\operatorname{ker}\left(d z+r^{2} d \theta\right) \\
& =\operatorname{span}\left\{\partial_{z}, \partial_{x}+y_{z}\right\} \\
& =\operatorname{span}\left\{\partial_{r}, r^{2} \partial_{z}-\partial_{\theta}\right\} \\
& \text { from Etnurés } \\
& \begin{array}{l}
\text { Leg. and Tranvisesd } \\
\text { Kits }
\end{array}
\end{aligned}
$$

Given a contact structure ξ on \mathbb{R}^{3}, an embedding $i: S^{\prime} \rightarrow \mathbb{R}^{3}$ we have 3 cases:
(1) i($\left.S^{\prime}\right)$ is tangent to $\xi \rightarrow\left(T_{x} i\left(s^{\prime}\right) \subset \xi_{x} \forall x\right)$
(2) $i\left(S^{\prime}\right)$ is transverse to $\xi \rightarrow\left(T_{x} i\left(s^{\prime}\right) \oplus \mathcal{O} \xi_{x}=T_{x} \mathbb{R}^{3} \forall x\right)$
(3) $i\left(s^{\prime}\right)$ is sometimes tangent, sometimes transverse

We call (1) a Legendrian knot and (2) a transverse knot
(1)

(2)

Equivalence of links:
Def: A Legendrian (Transverse) isotopy is an isotopy through a family of Leg. (Transverse) links
Fact: \exists Knots that are smoothly isotopic tut not Leg. (transversely) isotopic
Fact: Any smooth link can be C^{0} approximated by a Legendrian link
Legendrianlinks (in $\left.\mathbb{R}^{3}, \xi_{s t d}\right)$
Front projection $\pi: \mathbb{R}^{3} \rightarrow x z$-plane
Lagrangian projection $\pi: \mathbb{R}^{3} \rightarrow x y$-plane
Properties of Front projections:

- no vertical tangencies $d x=0 \Rightarrow d z=0$
- recover y coord. by $y=\frac{-d z}{d x}$
- slope of overcrossing more negative
- Reid. moves given by

Properties of Lagrangian Projections

- recover z-coord by $z=z_{0}+\int_{0}^{\theta} y(\theta) x^{\prime}(\theta) d \theta$
- Must satisfy
(1) $\int_{0}^{2 \pi} y(\theta) x^{\prime}(\theta) d \theta=0$
(2) $\int_{\theta_{1}}^{\theta_{2}} y(\theta) x^{\prime}(\theta) d \theta \neq 0$
- Partial Reidemeister moves:
K_{1} and K_{2} are Legendrian isotopic only if their Lagrangian projections are related by $L 2$ and $L 3$.

Classical invts of Leg. links

- Thurston-Bennequin \# - in $\left(\mathbb{R}^{3}, \xi s t a\right)$ given by linking number of L with small pushoff in ∂_{2} direction. $t_{b}(L)=$ writhe $(\pi(L))-\frac{1}{2}($ \# of cusps $)=$ writhe $(\pi(L))$
Ex:

$t b(L)=-1$

$+6(L)=-1$

$t b(L)=-2$

Rotation $r(L)=\frac{1}{2}(D-U)=\omega$ minding $\pi(L)$

Transverse links
Front projection:

- no downward vertical tangencies $\downarrow \in$
- no crossings of the form $1 / v$

Thu (2.9 in Etnyre) Any diagram satisfying the above 2 condition gives a transverse knot in $\left(\mathbb{R}, \xi_{s+d}\right)$. Two diagrams represent the same transverse isotopy class if and only if they ave related by the moves below

Ex:

Classical invt:
Self linking $s(T)=$ writhe $\pi(T)$
Transverse Lints in $\left(\mathbb{R}^{3}, \xi_{\text {sym }}\right)$
E_{x} :

Markov Moves for Transverse Links
Def: A transverse link $L \in\left(\mathbb{R}^{3}, \mathcal{E}_{\text {sym }}\right)$ is a geometric braid if $\left.\partial_{0}\right|_{L}>0$

Thu (Bennequin, '83): Any oriented transvere link is transverse isotopic to the closure of a braid
The (Orevkov and Shevchishin 'O2): Two braids B_{1}, B_{2} represent transversally isotopic links if and only if we can pass from B_{1} to B_{2} by conjugation, positive Markov mover and inverses

Conjugation
(MI)

Pos. Stabilization (MI+)

Notation:

- $S:=S^{\prime} u \ldots S^{\prime}$
- Given $\mathcal{L}: S \times I_{t} \rightarrow\left(\mathbb{R}^{3}, \xi_{\text {syn }}\right)$, write $L_{t}=\mathcal{L}(\cdot, t)$

Defi A transversal isotopy $\mathcal{L}: S x I_{t} \longrightarrow \mathbb{R}^{3}$ is monotone near the axis if $\exists t_{1}<\ldots<t_{k} \in I$ such that:

1) $\forall t: \exists!s_{i} \in S$ such that $\mathcal{L}^{-1}\left(\mathcal{O}_{z}\right)=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$
2) In every nth of $\left(s_{i}, t_{i}\right), \mathcal{L}$ is given by $x=\tau-3 s^{2}, \quad y=s \tau-s^{3}, z=z_{i}+s$
for τ coordinate on I centered at t_{i} and s a coord on S centered at s :

Figure 1. The curve $s \mapsto\left(\tau-3 s^{2}, s \tau-s^{3}\right)$
\mathcal{L} is monotone everywhere if L_{t} is a geometric braid for $t \notin\left\{t_{1}, \ldots, t_{k}\right\}$ and monotone near the axis
Goal: Make every isotopy monotone everywhere
Note; Fig. I represents a positive stabilization

Steps:
i) Show \mathcal{L} can be perturbed so as to be monotone need the axis
2) Upgrade I to be monotone everywhere

1) Replace every small nth of $p=\left(s_{i}, t_{i}\right) \in I^{-1}\left(O_{z}\right)$ by fig 1. As long as U is sufficiently small, we can ensure that L_{t} is transverse.

Figure 2. Making the isotopy monotone near $O z$
Specifically, $\frac{\partial z}{\partial s}>\varepsilon$ near O_{z} and can choose U small enough that $r^{2} \frac{\partial \theta}{\partial s}<\varepsilon$ so that $\frac{\partial z}{\partial s}-\left.r^{2} \frac{\partial \theta}{\partial s}\right|_{L_{+}}>0$
2) Need to make L_{t} a braid for $t \neq t_{i}$

Def: A bad zone of \mathcal{I} is anywhere \mathcal{I} is not a braid i.e. any connected component in $S \times I$ sit, $\left.\partial_{\theta}\right|_{L_{t}} \leq 0$

We call a bad zone V simple if
(1) $V_{t}:=(S \times t) \wedge V$ is connected for all $t \in I$
(2) The total increment of θ along V
is less than 2π

The shadow of \mathcal{L} on a bad zone V is the set
$\left\{\left(s_{0}, t_{0}\right) \in V \mid\right.$ the shortest segment between $\mathcal{L}(s, t)$ and O_{z} interacts, $\mathrm{L}\left(\cdot, \mathrm{t}_{0}\right)$ at $\left.\left(s, t_{0}\right)\right\}$

Equivalently, points where $\mathcal{L}(V)$ is an undererossing in the θz-projection

Lemma: Can eliminate simple non-shadowed bad zones fixed

Lemma: Can "wrinkle" a bad zone in a small n bid U of a smooth curve $L \in V$ so that $\varepsilon>\frac{\partial \theta}{\partial s} / \frac{\partial z}{\partial s}>0$ in that nohd

Morally: cut smooth curve le $S \times I$

Need to examine singularities of projection of \mathcal{L} onto θz-cylinder:
0 . Generic singularities \longleftrightarrow crossings

1. L_{t} meets z-axis (as in fig 1)
2. Lt has a unique ordinary tangency pt (T2)
3. L_{t} has a unique triple pt (T3) A sing is positive if $\frac{\partial \theta}{\partial s}>0$ for every pt of L_{t} projecting onto $\partial ⿱$ it and non-positive $0 / \omega$.
A sing. is bad if there is a negative arc shadowed by some other are
Lemma: We can perturb all bad non-positive singularities of type (2) and (3)

bad zones shadowed
by bad zones

Algorithm:
Given \mathcal{Z} monotone near the axis with bad zones V_{1}, \ldots, V_{n} we eliminate bad zones successively via the following steps.

1) Eliminate bad non-positive singularities of Type (2) and (3)
Denote the shadows of V_{i} on V_{1} by $l_{1}, l_{2}, \ldots l_{k}$
2) Wrinkle along components of bad zones V_{i} shadowing V_{1} as in fig. $6 t$
3) Wrinkle V. wherever it's shadowed to get non shadowed bad zones \rightarrow corresponding to V_{1}

\qquad
\qquad

4) Wrinkle new bad zones if needed to make sure they're simple
5) Apply fig. 3 to get rid of non-shadowed bad zones.
6) Repeat for successive $V_{\text {; }}$

Note; At each step, we wrinkle away from tangencies and triple pts. so we can make sure no new shadow appears.

