
MARKOV THEOREM FOR TRANSVERSAL LINKSS. Yu. Orevkov, V. V. Shev
hishinAbstra
t. It is shown that two braids represent transversally isotopi
 links if andonly if one 
an pass from one braid to another by 
onjugations in braid groups, positiveMarkov moves, and their inverses.Revised version, 12 February 2002By a well-known theorem of Alexander [1℄, any oriented link in R3 is isotopi
to the 
losure of a braid. The question when two braids represent isotopi
 linksis answered by Markov's theorem [11℄ (see [3℄, [2℄, or [13℄ for proofs): It is soif and only if one 
an pass from one braid to another by 
onjugations in braidgroups Bn, the transformations M�n : Bn ! Bn+1, M+n : b 7! b � �n, M�n : b 7!b � ��1n 
alled positive/negative Markov moves or stabilizations, and their inverses(destabilizations).In the seminal paper [2℄ Bennequin established, among other very importantresults, the analogue of Alexander's theorem for transversal links (i.e., links trans-verse to the standard 
onta
t stru
ture; see below). Namely, any transversal linkis transversally isotopi
 to the 
losure of a braid. The purpose of this paper is toprove the 
orresponding analogue of Markov's theorem.Theorem. Two braids represent transversally isotopi
 links if and only if one 
anpass from one braid to another by 
onjugations in braid groups, positive Markovmoves, and their inverses.When this paper had been already �nished, we learned from Vi
tor Ginzburgthat he had announ
ed this result around 1992. However, his proof has never beenpublished. Another proof of the theorem based on 
ompletely di�erent ideas wasindependently obtained by Nan
y Wrinkle in her PhD thesis [14℄.Let us re
all the standard de�nitions (see e.g. [2℄). Consider the 1-form � =dz + x dy � y dx in R3 with 
oordinates x; y; z. It de�nes the standard 
onta
tstru
ture in R3 . In the 
ylindri
 
oordinates r; �; z with x = r 
os �, y = r sin � onehas � = dz + r2d�.A link L in R3 is transversal if the restri
tion �jL nowhere vanishes. In this 
ase�jL de�nes a 
anoni
al orientation on L.A geometri
 braid in R3 is an oriented link L su
h that the restri
tion d�jL ispositive. In parti
ular, L is disjoint from the z-axis Oz. The degree of L, also 
alledthe number of strings of L, is the degree of the proje
tion (r; �; z) 7! � restri
tedto L. There is a 
anoni
al one-to-one 
orresponden
e between isotopy 
lasses ofgeometri
 braids of degree n and 
onjuga
y 
lasses in the braid group Bn.Typeset by AMS-TEX1



2 S. YU. OREVKOV, V. V. SHEVCHISHINAny 
onjuga
y 
lass in Bn de�nes a transversal isotopy 
lass of transversal links.Indeed, any braid b 2 Bn 
an be realized as a geometri
 braid suÆ
iently C1-
loseto the standard 
ir
le r = 1, z = 0, whi
h is 
learly transversal.The rest of the paper is devoted to the proof of Theorem. Essentially, our proofis a parametri
 version of Bennequin's proof of his result 
ited above.Let L0 and L1 be two transversal geometri
 braids and fLtgt2[0;1℄ a transversalisotopy between L0 and L1. Denote the interval [0; 1℄ by I, the number of 
om-ponents of L0 by m, and the disjoint union of m abstra
t 
ir
les by S. Abusingnotation, we shall denote by s a positively oriented (lo
al) 
oordinate on S, asalso a 
urrent point of S. The isotopy fLtgt2I 
an be parameterized by a smoothmap L : S � I ! R3 su
h that for every t 2 I the map Lt : s 7! L(s; t) is aparameterization of Lt.De�nition 1. Let fLtgt2I be a transversal isotopy parameterized by a map L :S � I ! R3 . It is 
alled monotone near the axis if there exists a �nite number ofparameters 0 < t1 < � � � < tk < 1 su
h that the following holds:(1) For any ti there exists a unique si 2 S su
h that L(si; ti) lies on the z-axisOz, and L�1(Oz) = f(s1; t1); : : : ; (sk; tk)g.(2) Up to a rotation of R3 around Oz, the mapping L is given in a neighborhoodof every (si; ti) by x = ��3s2, y = s��s3, z = zi+s, where s is a positivelyoriented 
oordinate on S 
entered at si and � is a 
oordinate on I 
enteredat ti and oriented either positively or negatively.The isotopy fLtgt2I is monotone everywhere if additionally(3) Lt is a transversal geometri
 braid for every t 62 ft1; : : : ; tkg.Note, that if we �x t 6= 0 and substitute x = � � 3s2, y = s� � s3 into the 1-formr2d� = x dy� y dx, we get r2d� = (�2 +3s4)ds > 0. Thus, 
onditions (2) and (3) ofDe�nition 1 are 
onsistent.We shall always assume that isotopies we 
onsider are suÆ
iently generi
 outsidea small neighborhood of the axis Oz.Lemma 1. Let b0 and b1 be two braids, L0 and L1 the transversal geometri
 braidsde�ned by them. Assume that there exists an everywhere monotone isotopy betweenL0 and L1. Then one 
an pass from b0 to b1 by 
onjugations in braid groups, positiveMarkov moves, and their inverses.Proof. When passing through a 
riti
al value t = ti, the proje
tion of Lt onto thehorizontal plane Oxy transforms near the origin as in Figure 1. This is a positiveMarkov move. �
τ < 0 τ = 0 τ > 0Figure 1. The 
urve s 7! (� � 3s2; s� � s3)



MARKOV THEOREM FOR TRANSVERSAL LINKS 3Lemma 2. Let fLtgt2I be a transversal isotopy between transversal geometri
braids L0 and L1. Then it 
an be perturbed into an isotopy fL0tgt2I whi
h is mono-tone near the axis.Proof. Let L : S�I ! R3 be a smooth mapping whi
h parameterizes fLtg. Perturb-ing it if ne
essary, we 
an suppose that it is transverse to the axis Oz. Let us 
onsidera point p = (s0; t0) 2 S�I su
h that L(p) lies on Oz. Let s and t be 
oordinates on Sand I near s0 and t0 respe
tively (with ds > 0). Set L(s; t) = �x(s; t); y(s; t); z(s; t)�.Sin
e all Lt's are transversal braids, we have �z=�s > 0 at p. Hen
e, there exists aneighborhood U of p su
h that �z=�s > " > 0 in U . Let us modify �x(s; t); y(s; t)�in U repla
ing it by the homotopy in Figure 2 (the shaded zone 
orresponds to thehomotopy des
ribed in Part (2) of De�nition 1 and shown in Figure 1; we assumehere that before the modi�
ation the homotopy looked as a parallel motion of averti
al line). If U is suÆ
iently small, then we 
an a
hieve that jr2�0sj < " in U ,whi
h provides that L�t� > 0. �
Figure 2. Making the isotopy monotone near OzDe�nition 2. Let fLtgt2I be a transversal isotopy parameterized by a map L :S � I ! R3 . A bad zone of L is a 
onne
ted 
omponent of the set of those pointsof S � I in whi
h ��=�s 6 0, where �(s; t) is the �-
omponent of L(s; t).A bad zone V is simple if(1) Vt := (S � t) \ V is 
onne
ted for all t 2 I;(2) the total in
rement of � along Vt is less than 2�.The shadow of L on a bad zone V is the set of those points (s0; t0) 2 V forwhi
h the shortest segment 
onne
ting p0 := L(s0; t0) with the axis Oz meets Lt0at some point L(s1; t0). The set of all su
h \shading" points (s1; t0) will be 
alledthe inverse shadow of V .A bad zone V is 
alled non-shadowed if the shadow of L on V is empty.Lemma 3. Let fLtgt2I be a transversal isotopy between transversal geometri
braids L0 and L1 parameterized by L : S � I ! R3 whi
h is monotone near theaxis. Let V be a simple and non-shadowed bad zone and U an arbitrary open subsetof S � I 
ontaining V .Then L 
an be deformed into a transversal isotopy ~L : S � I ! R3 whi
h ismonotone near the axis, 
oin
ides with L outside U , and su
h that no bad zone of~L meets V .Proof. Let us write in the 
ylindri
 
oordinates L(s; t) = �r(s; t); �(s; t); z(s; t)�.Then we have z0s+r2 �0s > 0. This implies that z0s > 0 on V . Choose a neighborhoodV + of V 
ontained in U su
h that z0s > " > 0 in V +.
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t = aFigure 3. Elimination of a bad zone (proje
tion onto Oxy)Let [a; b℄ be the proje
tion of V onto I. We repla
e the 
omponents x(s; t) andy(s; t) of L in V + by the homotopy shown in Figure 3, preserving the 
omponentz(s; t).In Figure 3, the bold lines represent the part of the homotopy whi
h is not
hanged; the dashed and resp. thin solid lines depi
t the isotopy before and afterthe modi�
ation; the \�" represents the origin of the plane Oxy. The �rst threesteps in Figure 3 is a deformation of the homotopy des
ribed in De�nition 1(2), seeFigure 1.Figure 3 depi
ts the modi�ed homotopy for t < 
 for some 
 2 [a; b℄. To 
onstru
tthe modi�ed homotopy for t > 
 we perform the same operations in the reverseorder. �Lemma 4. Let fLtgt2I be a transversal isotopy between transversal geometri
braids L0 and L1 parameterized by L : S � I ! R3 , whi
h is monotone near theaxis. Let �r(s; t); �(s; t); z(s; t)� be a representation of L in 
ylindri
 
oordinate. LetV be a bad zone, l a generi
 smooth embedded 
urve in V whi
h is the graph of afun
tion t = '(s), and U a neighborhood of l in S � I. Let " > 0.Then there exist a suÆ
iently small open tubular neighborhood U� of l in S � Iand a perturbation ~L of L of the form ~L = �r(s; t); ~�(s; t); z(s; t)� (i.e., only the�-
omponent is 
hanged), su
h that(1) �(V nU�) is smooth.(2) ~L is monotone near the axis and 
oin
ides with L outside U .(3) �~�=�s is positive in U� \ V for ~L.(4) the signs of ��=�s and �~�=�s 
oin
ide outside U� \ V .(5) maxU� � �~��sÆ�z�s� < ".Informally speaking, this means that a bad zone 
an be 
ut along any smooth
urve. The operation des
ribed in the proof of Lemma 4 will be 
alled wrinklingalong the 
urve l. The left hand side of (5) will be 
alled the maximal slope ofthe wrinkling. The assertion of the lemma in the manifestation of the Gromov'sh-prin
iple in this setting.Proof. In a neighborhood of every point (s0; t0) of l we perturb �(s; t) by makinga small wrinkle on the graph of �(s; t0) at s0 as it is shown in Figure 4, 
f. [2℄,pp.143{144. �Let fLtgt2I be a transversal isotopy. Assume that fLtg is monotone near theOz-axis and generi
 outside a small neighborhood of the axis Oz. Then for a generi
value t0 of the parameter t the proje
tion of the link Lt0 on the 
ylinder S1 � Rwith the 
oordinates (�; z) is an immersion and the only singularities of the image
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sFigure 4. Wrinklingare 
rossings, i.e., ordinary double points. Moreover, there exist only �nitely manyvalues 0 < t1 < � � � < tk < 1 for whi
h the proje
tion of Lti on �z-
ylinder has aunique singularity of one of the following types:(I) Lti meets the axis Oz at some point in the way des
ribed in De�nition 1.(II) The proje
tion of Lti on �z-
ylinder has a unique ordinary tangen
y point.(III) The proje
tion of Lti on �z-
ylinder has a unique ordinary triple point.The singularities of types (II) and (III), respe
tively, are the se
ond and third Rei-demeister moves in 
oordinates (�; z). The �rst Reidemeister move in 
oordinates(�; z) is impossible for transversal links sin
e the derivatives �z�s and ���s 
an notboth vanish. Instead, a single Reidemeister move of the �rst kind o

urs in everytype (I) singularity of a transversal isotopy provided we 
onsider the proje
tion onOxy-plane, see Figure 1.When we depi
t a 
rossing of the �z-proje
tion of a link Lt, we assume that welook from the axis Oz, i.e. the overpass (resp. underpass) 
orresponds to the ar
with a smaller (resp. bigger) value of r. So, we say that an ar
 with a smaller valueof r passes over or shadows an ar
 with a bigger value of r (
ompare with De�nition2).A singularity of the type (II) or (III) is 
alled positive if ���s > 0 at every pointof Lti whi
h proje
ts on the singularity, and non-positive otherwise. A non-positivesingularity of the type (II) is 
alled bad if there is a negative ar
 (with ���s > 0)whi
h is shadowed by another ar
 at the singularity.Lemma 5. Let L be a transversal link. Suppose that the proje
tion onto the �z-
ylinder has a bad non-positive singularity of the type (II). Then the both bran
hesare negative at this point.Proof. Let the bran
hes be parametrized by (r�(s); ��(s); z� (s)), � = 1; 2, so thatr1 > r2 at the 
rossing point. The tangen
y means that z02=z01 = �02=�01 = �. Sin
e�jL is positive, we have z0j+r2j �0j > 0, j = 1; 2. Sin
e the singularity is bad, we have�01 < 0. Suppose that �02 > 0. Then � < 0 and we have0 < z02 + r22�02 < z02 + r21�02 = (z01 + r21�01)� < 0: �Lemma 6. Any transversal isotopy fLtg monotone near the Oz-axis and generi
outside it 
an be perturbed into a transversal isotopy ~L without non-positive sin-gularities of type (III) and without bad non-positive singularities of the type (II).Moreover, su
h a perturbation 
an be made C0-small and lo
ated in arbitrarily smallneighborhoods of the points (sj ; tj) for whi
h the thread L(s; tj) passes though a sin-gularity of the type (II) or (III) with non-positive derivative ���s at s = sj.



6 S. YU. OREVKOV, V. V. SHEVCHISHINProof. As in Lemma 4, it is suÆ
ient to perturb only the 
oordinate �.Step 1. Elimination of non-positive triple points. At ea
h non-positive triplepoint, we perturb all negative bran
hes as in Figure 5a. This 
an be done byrepla
ing �(s; t) with ~�(s; t) = �(s; t) + f(z(s; t); s) where the fun
tion f(z; s) is thesame for all the negative bran
hes. In the 
ase when there are exa
tly two negativebran
hes, we take 
are that for any t the 
rossing point of the perturbed bran
hesrests on the same pla
e as it was before the perturbation. After su
h modi�
ationthe triple point be
omes positive and no other triple points apear (a priori, newsingularities of the type (II) may appear).Step 2. Elimination of bad tangen
ies. Consider a bad non-positive singularityof the type (II). By Lemma 5, the both bran
hes are negative at this point. Weperturb them in the same way as in Step 1 (see Figure 5b). �
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(a) (b)Figure 5. Elimination of bad non-positive singularitiesProof of Theorem. By Lemma 1, it is suÆ
ient to prove that any transversal isotopyL between transversal geometri
 braids L0 and L1 
an be transformed into aneverywhere monotone isotopy (see De�nition 1). By Lemma 2, we may supposethat L is monotone near the axis Oz.Wrinkling L along suÆ
iently many segments s = 
onst as in Lemma 4, we 
anassume that all the bad zones are simple. Let us denote them by V1; V2; : : : ; Vn.Fix disjoint neighborhoods Ui's of Vi's. We are going to eliminate the bad zonesone by one modifying L at the i-th step only in Ui [ � � � [ Un. This insures thatthe pro
edure will terminate. The isotopy obtained after the i-th modi�
ation isdenoted by Li and L0 = L is the initial isotopy. Every Li will be monotone nearthe axis Oz.To pass from Li to Li+1, we pro
eed as follows (
ompare with [2℄, Theorem 8,pp.142{144).Step 1. Eliminate non-positive singularities of Li of the type (III) and bad non-positive singularities of the type (II) applying Lemma 6.Let us 
onsider 
onne
ted 
omponents `1; `2; : : : of the inverse shadow of Vi on theother bad zones (a bad zone 
annot shadow itself be
ause �z=�s > 0 on it). Anypoint (s; t) of any `� 
orresponds to a 
rossing of the proje
tion of Lt onto the�z-
ylinder. The 
rossing is either as in Figure 6a or as in Figure 6b.Step 2. For ea
h 
omponent `� 
orresponding to Figure 6b, we wrinkle the 
orre-sponding bad zone along it (see Figure 7).Step 3. Wrinkle Vi along the shadow of Li (see Figure 8).Note that 
rossings as in Figure 6a are eliminated at Step 2 and the fa
t that
rossings as in Figure 9 are impossible, is proved in [2, pp.142{144℄ (the proof is
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(a) (b)Figure 6. Figure 7. Wrinkling at Step 2
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Figure 8. Wrinkling at Step 3similar to that of Lemma 5). If the maximal slope of the wrinkling is small enough(see 
ondition (5) of Lemma 4), then no new shadow appears be
ause the wrinklingis performed away from tangen
ies and triple points.
θ

z

Figure 9. Impossible 
rossingStep 4. Wrinkle, if ne
essary, the obtained bad zones along segments s = 
onst tomake all the bad zones simple.Step 5. Apply Lemma 3 to all the newly obtained bad zones in Ui. �Example. A

ording to [7℄, two transversal unknots are transversally isotopi
i� they have the same Bennequin index. The Bennequin index of a transversalgeometri
 braid L 
orresponding to a braid b 2 Bn is equal to (Pi ki) � n forb =Qi �kiji (see [2℄). Therefore, by our Theorem, any braid representing an unknot
an be transformed by positive (de)stabilizations and 
onjugations into the braid��11 : : : ��1n�1 2 Bn for some n. Here is the sequen
e of transformations for the braid��11 �2��13 (k and �k stand for �k and ��1k ; M�1+ for a positive destabilization):�12�3 = �1�332�3 = �3�132�3 = �3�1�232 
onj�! �1�232�3 = �1�2�232 
onj�! 2�1�2�23 M�1+�! 2�1�2�2 
onj�! �1�2:



8 S. YU. OREVKOV, V. V. SHEVCHISHINAppendix. Markov's Theorem fromthe Point View of Conta
t Topology.Here we dis
uss some \
lassi
al" and re
ent results on 
onta
t isotopy of Legen-drian and transversal knots in R3 and dedu
e \topologi
al" Markov's theorem fromits 
onta
t version.We start with a brief des
ription of related notions and 
onstru
tions, referringto the arti
les [9℄ and [10℄ for more details. Noti
e that the 
onta
t stru
turein R3 use there is given by the form �jet := dz � ydx and originates from theidenti�
ation of R3 with the spa
e J1R of 1-jets of fun
tions on the real axis R. Thesubstitution (x; y; z) 7! (x; 2y; z + xy) transforms �jet into the rotation invariantform �rot := dz + xdy � ydx = dz + r2d� used in the main part. Thus both formsde�ne the same 
onta
t stru
ture. The advantage of the form �jet is that it providesa possibility to 
ontrol over Legendrian and transversal knots by their proje
tionson xy- and xz-planes.A link L in R3 is Legendrian (transversal) w.r.t. a 
onta
t form � if the restri
tion�jL vanishes identi
ally (never vanishes). The 
onta
t orientation of a transversallink L is indu
ed by the restri
tion �jL. A link isotopy fLtg is Legendrian (resp.,transversal) if every Lt has this property. We always assume that Legendrian,transversal, and usual (\topologi
al") isotopies preserve the orientation of the link.Every link in R3 admits both Legendrian and transversal representation. Leg-endrian and transversal links have additional Z-valued invariants 
onstraining theexisten
e of a 
onta
t isotopy: these are the Maslov and Thurston-Bennequin in-di
es in the Legendrian 
ase and the Thurston-Bennequin index in the transversal
ase, denoted by �(L) and tb(L) respe
tively.Assume that L1 and L2 are disjoint links, both Legendrian or transversal. Letlk(L1; L2) be their linking number. Then �(L1 t L2) = �(L1) + �(L2) (linearbehavior) and tb(L1 t L2) = tb(L1) + 2lk(L1; L2) + tb(L2) (quadrati
 behavior).This redu
es the 
omputation of the indi
es to the 
ase of knots.The Thurston-Bennequin index of a knot is independent of its orientation, whilethe Maslov index 
hanges the sign if we reverse the orientation. The Thurston-Bennequin index of a transversal link L(b) represented by an algebrai
 braid b withn strands equals tb(L(b)) = deg(b)� n where deg(b) is the algebrai
 degree of b.Every oriented Legendrian link L 
an be smoothly approximated by a transversallink L+ whose 
onta
t orientation 
oin
ides with that indu
ed from L. Moreover,su
h a link L+ is unique up to transversal isotopy. Similarly, there exists a uniquetransversal isotopy 
lass of links L� whi
h approximate L with the reversed orien-tation. The indi
es of L� are related to those of L as tb(L�) = tb(L0)� �(L0).There exist several 
onstrains on possible values of Maslov and Thurston-Benne-quin indi
es of Legendrian and transversal links in R3 . The �rst one is that tb(L)(resp., tb(L) � �(L)) has the same parity as the number of 
omponents of thetransversal (Legendrian) link L. In parti
ular, tb(L) is odd for every transversalknot. Another 
onstrain is the Bennequin inequality tb(L) � ��(F ) for everytransversal link L and its Seifert surfa
e F . Unlike the �rst 
onstrain, this one ishighly non-trivial and re
e
ts the fa
t that the standard 
onta
t stru
ture in R3is tight (see [7℄ for more details). For a Legendrian link L this inequality readstb(L) + j�(L)j � ��(F ). Some further inequalities are listed in [10℄.It is always possible to de
rease the Thurston-Bennequin index of a Legendrian ortransversal knot L. More pre
isely, there exists transformations �+ and �� (resp., a



MARKOV THEOREM FOR TRANSVERSAL LINKS 9transformation �) of isotopy 
lasses of oriented Legendrian (resp., transversal) knotswith the following properties:(1) The transformations �� and � 
an be realized by adding an appropriateunknotted loop in any given neighborhood of any given point on L; in par-ti
ular, they 
an be represented by an appropriate Legendrian knot ��L(resp., a transversal knot �L) in the topologi
al isotopy 
lass of L.(2) The operations �+ and �� 
ommute, i.e., there exists a Legendrian isotopybetween �+(��L) and ��(�+L).(3) If a braid b represents a transversal knot L, then the braid M�b obtainedfrom b by negative stabilization represents �L.(4) tb(��L) = tb(L)�1 and �(��L) = �(L)�1 in the Legendrian 
ase; tb(�L) =tb(L)� 2 in the transversal 
ase.(5) For an oriented Legendrian knot L, the knot (�+L)+ (see above) is transver-sally isotopi
 to L+ and the knot (�+L)� to �(L�); similarly, the knot(��L)� is transversally isotopi
 to L� and the knot (��L)+ to �(L�).(6) The transformations �� and � naturally extend to links; one should onlyindi
ate to whi
h 
omponent of the link the operation is applied.We refer to [10℄ for the de�nition of the transformations �� and the proof ofthe properties (1{5). However, it should be noti
ed that these transformations areknown well enough as a part of the 
onta
t topology folklore, so looking for referen
eswould be an ungrateful task. The property (3) 
an be used as the de�nition of theoperation �. The property (5) means that, informally speaking, after the \positive(negative) transversalization" L 7! L+ (resp., L 7! L�) the operation �� des
endsto the stabilization M� (resp., M�) of the same (resp., opposite) sign.Proposition A. Let L1 and L2 be two oriented Legendrian (resp., transversal) linkswhi
h are topologi
ally isotopi
; then one 
an obtain Legendrian (resp., transversal)isotopi
 links L01 and L02 applying the operations �� (resp., �) to ea
h 
omponent ofL1 and L2 suÆ
iently many times.Proposition B. Let L1 and L2 be two oriented Legendrian links; then the linksL+1 and L+2 are transversally isotopi
 if and only if one 
an transform L1 into L2applying Legendrian isotopies, the operation �+, and its inverse.In the 
ase of knots Proposition A was proved in [10℄ and Proposition B in [9℄.However, sin
e the 
ondition of being 
onne
ted is not used in the both proofs, thegeneral 
ase follows as well. In view of the property (3), our Theorem and Proposi-tion A imply Markov's theorem for knots in the re�ned form stated in Introdu
tion.As one 
an easily see the re�ned form remains valid in the 
ase of links after an ap-propriate generalization of negative (de)stabilizations. Su
h a generalization shouldrepresent the operation � applied to any pres
ribed 
omponent of the link. Forexample, one 
an take operationsM�k : b 2 Bn 7! �n�1 � � � �k b ��1k � � � ��1n�1��1n 2 Bn+1whi
h are 
ompositions of the 
onjugation in Bn by �n�1 � � � �k with the negativestabilization M�.In view of Proposition A, the authors of [10℄ have expressed the 
onje
ture thatthe transversal (Legendrian) isotopy 
lass of a knot is 
ompletely determined byits topologi
al isotopy 
lass and its Thurston-Bennequin (and Maslov) index. This
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onje
ture has been disproved by Yuri�� Chekanov who has 
onstru
ted [6℄ new in-variants of Legendrian knots and has given an example of two Legendrian knotswhi
h are topologi
ally isotopi
 and have equal Thurston-Bennequin and Maslovindi
es but di�erent Chekanov's invariants. Some examples of even �ner type havebeen found in [9℄. Namely, there exist Legendrian knots L1 and L2 whi
h have equalThurston-Bennequin and Maslov 
lasses and transversally isotopi
 \transversaliza-tions" L+1 and L+2 , but nevertheless L1 and L2 are not Legendrian isotopi
. On theother hand, the Legendrian isotopy 
lass of the unknot is 
ompletely determined byits Thurston-Bennequin and Maslov indi
es, see [7℄ and [8℄.A similar 
ounterexample for transversal knots has been 
onstru
ted in [4℄. It isshown that the braids�2p+11 �2q2 �2r1 ��12 and �2p+11 ��12 �2r1 �2q2 with p; q; r > 1 and q 6= rrepresent the knots K1 and K2 whi
h are topologi
ally isotopi
 and have equalThurston-Bennequin indi
es but whi
h are not isotopi
 transversally. On the otherhand, there are several types of knots and links for whi
h the transversal iso-topy 
lass is 
ompletely determined by its topologi
al isotopy 
lass and Thurston-Bennequin indi
es of the 
omponents, see [5℄. For example, those are unlinks anditerated torus knots.The dis
ussions made so far lead to the following problems:P1 Does there exist two Legendrian knots L1 and L2 whi
h are not Legendrianisotopi
, but the \transversalizations" of both signs L+1 and L+2 (resp., L�1and L�2 ) are transversally isotopi
?The negative answer to this question is 
onje
tured (indire
tly) in [9℄.P2 Find an analogue of Alexander's and Markov's theorems for Legendrianlinks.We �nish the paper with a des
ription of a natural 
onstru
tion of 
losed Legen-drian braids. It 
an be 
onsidered as the �rst step toward the solution of ProblemP2. First, we des
ribe possible Legendrian isotopy 
lasses of unknots. Let �L0;0 bethe 
urve in the xz-plane given by the equation z2 = 
os3(x) with jxj � �=2 andjzj � 1, see Figure 10.
x

y

x

z

Figure 10. The xz- and xy-proje
tions of L0;0.This 
urve lifts uniquely to a smooth Legendrian 
urve L0;0 in R3 with thestandard 
onta
t stru
ture given by dz � ydx. Namely, the lift of ea
h bran
hgiven z(x) = � 
os3=2(x) is parameterized by (x; z0(x); z(x)) with z0(x) := dz(x)dx =� 32 
os1=2(x) sin(x). Observe that in a neighborhood of ea
h 
usp-point (��2 ; 0; 0)the 
urve L0;0 admits the parameterizationx(t) = � ar

os(t2); y(t) = � 32 tp1� t4; z(t) = t3
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lose to 0. This shows that L0;0 is a smooth Legendrian unknot. Dire
t
omputation gives �(L0;0) = 0 and tb(L0;0) = �1, see [10℄, x3.4.Set L(p; q) := �p+Æ�q�(L0;0). Then �(Lp;q) = p�q and tb(Lp;q) = �1�p�q. By theresults of Bennequin and Eliashberg that every Legendrian unknot L is Legendrianisotopi
 to L(p; q) with p = (�(L)� tb(L)� 1)=2 and q = (��(L)� tb(L)� 1)=2.Now assume that Lb is a Legendrian braid with the \axis" La, whi
h is also aLegendrian knot. Then there exists a tubular neighborhood U �= ��La of La and
oordinates (v; w; �) in U su
h that(1) � is the 
oordinate along La �= S1;(2) (v; w) 2 � are normal 
oordinates to La in U ;(3) the 
onta
t stru
ture in U is given by the form dv � wd�;(4) the proje
tion �v;� : Lb ! [0; 1℄ � La of Lb onto the strip [0; 1℄ � La with
oordinates (v; �) has only simple transversal 
rossings.Observe that the proje
tion of Lb onto (v; �)-strip determines Lb 
ompletely. Indeed,if (v; w) = (fi(�); gi(�)) is a lo
al parameterization of a strand of Lb, then gi(�) isthe derivative of fi(�), gi(�) = f 0i(�). It follows then that the proje
tion has onlypositive 
rossings.Vi
e versa, given a Legendrian knot La and a positive braid b, there exists aLegendrian link Lb realized as the 
losure of b in arbitrary tubular neighborhood Uof La. Moreover, the Legendrian isotopy 
lass of su
h a link Lb is well-de�ned. Weshall use the notation La n b to denote su
h a link Lb.Lemma 6.(1) The link Lp;q n b is represented by the braid ��p�q�1 � b.(2) For any Legendrian knot La and a positive braid b 2 B+(n),��La n b� = �(La) � n and tb�La n b� = n2tb(La) + deg(b).In parti
ular, ��Lp;q n b� = n(p� q) and tb�Lp;q n b� = deg(b)� n2(p+ q + 1).Observe that every braid b 2 B(n) 
an be de
omposed as b = ��k � b+ withappropriate k � 0 and b+ 2 B+(n).Proof. Every Legendrian knot L in R3 has two natural framings: the Legendrianone given by the 
onta
t distribution � := ker(dz�ydx) � TR3 and the topologi
alone given by its Seifert surfa
e. In parti
ular, the 
oordinates (v; w; �) in a tubularneighborhood of L introdu
ed above de�ne the Legendrian framing. By de�nition,the Thurston-Bennequin index tb(L) is the linking number between L and the knotL0 obtained from L by pushing it slightly in the positive (or negative) normal di-re
tion to the 
onta
t distribution � = ker(dz � ydx). Thus tb(L) is the rotationnumber of the Legendrian framing with respe
t to the topologi
al one. The part(1) of the lemma follows.It follows from de�nition that the Maslov index of a Legendrian link L in R3 isthe winding number of the proje
tion of L onto xy-plane. Sin
e every strand ofLa n b is C1 
lose to La we immediately obtain ��La n b� = �(La) � n.Now assume that b0 2 B+(n) is the trivial braid. Let Li, i = 1 : : : n, be thestrands of La n b0. Then every Li is Legendrian isotopi
 to La and represents the\push in the dire
tion normal to �". So the linking number lk(Li; Lj) = tb(Li) =tb(La). Then tb(La n b0) =Pi tb(Li) +Pi<j 2lk(Li; Lj) = n2tb(La).To obtain the general 
ase, we use the algorithm for 
omputing of the Thurston-Bennequin index of a Legendrian link L in R3 by its proje
tion onto xz-plane, see



12 S. YU. OREVKOV, V. V. SHEVCHISHIN[10℄, x3.4. After a small Legendrian perturbation, the only singularities of su
h aproje
tion are transversal 
rossings and 
usps. A 
rossing is 
alled positive (nega-tive) if both strands 
ross the verti
al line in the same (resp., opposite) dire
tion.Then tb(L) is the number of positive 
rossings minus the number of negative 
ross-ings minus half the number of 
usps. Now, it remains to observe that for b 2 B+(n)the xz-proje
tions of La n b|
ompared with that of La n b0|has exa
tly deg(b)additional positive 
rossings. �A
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