Def. A bi-complex C is the following information

$$
\begin{aligned}
& C=\left\{\begin{array}{l}
C_{p . g} \quad R \text {-modules } \\
\delta_{p . i}: C_{p . g} \rightarrow C_{p-1 .} \\
d_{p . j}: C_{p . g} \rightarrow C_{p . g-1}
\end{array} \quad\right. \text { R-modules homomophisens. } \\
& \leftarrow \stackrel{\downarrow}{\downarrow} \rho_{j+1}^{\delta} \leftarrow d^{\downarrow+1 \delta^{p+1}} \leftarrow \\
& \text { Set. } \quad \downarrow d \geqslant \quad l d \text { comuntes; and also } \delta^{2}=0 ; d^{2}=0 \text {. } \\
& \leftarrow \mathrm{O}_{\downarrow}^{\mathrm{P} .6} \stackrel{\delta}{\leftarrow} \mathrm{C}_{\downarrow}^{\mathrm{p+1} .6} \leftarrow
\end{aligned}
$$

We often assume that $C_{p . g}=0$ if $p<0$ or geo.

Homologies: Since every row x colum are chain complexes. mp \exists homologies $\quad H_{p, \delta}(C, \delta)=\operatorname{ker}\left(\delta_{p, 8}\right) / \operatorname{Im}\left(\delta_{p+1, \delta}\right)$.

$$
H_{p, q}(c, d)=\operatorname{Kar}\left(d_{p, q}\right) / \operatorname{Im}\left(\delta_{p, q+1}\right)
$$

Define $\quad C_{i}^{T 0+}=\underset{p+\sigma_{i}=i}{\oplus} C_{p, 8}=C_{i, 0} \oplus C_{i 1,1} \oplus \cdots \oplus C_{0, i}$
Define $D_{i}=C_{i}^{70+} \rightarrow C_{i-1}^{700}$ by

$$
\left.D=\stackrel{\oplus+q_{q}=i}{ } \mid \delta_{p, q}+(-1)^{p} d p \cdot q\right)
$$

Lemma: $D \cdot D=0$.
prof: $D \circ D=\left(\delta+(-1)^{p+1} d\right) \cdot\left(\delta+(-1)^{p} d\right)$

$$
=\delta^{2}+(-1)^{p} d \delta+(-1)^{p+1} \delta d-d^{2}=0 .
$$

Hence the chain apter $\left(C_{i}^{\text {Tot }}, D_{i}^{\text {Tot }}\right)$ defines a homology $H_{i}^{\text {To f }}(c):=$ KerDi/2mDi+1.

Spectral sequences: Goal: Relates $H_{p, p}(c, \delta), H_{p . b}(c, d) \times H_{i}^{\text {Tot }}(c)$.

More definitions: Define the horizontal Filtration \& vertical Filtration by

$$
{ }^{v} F_{i} C_{n}:=\underset{\substack{p+q=n \\ \beta ; i}}{\bigoplus} C_{p i q}
$$

For simplicity, write ${ }^{H} F_{i} C_{n}=F_{i} C_{n}$ now. Notice

$$
D: F_{i} C_{n} \rightarrow F_{i} C_{n-1} \quad \text { So } F_{i} C_{0} \rightleftarrows F_{i} C_{1} \rightleftarrows F_{i} C_{2} \rightleftarrows \ldots
$$

is a chain copter. Write its homology as FiH_{n}.
Hence $H_{n}^{\text {Tot }}=$ Filth

Let $\quad E_{p p q}^{r}=\frac{F_{p} C_{p+q} \cap D^{-1}\left(F_{p-r} C_{p+q-1}\right)}{\left[F_{p-1} C_{p+q} \cap D^{-1}\left(F_{p-r} C_{p+q-1}\right)\right]+\left[F_{p} C_{p+q} \cap D\left(F_{p+r-1} C_{p+q+1}\right)\right]}$
Notice, $E_{p, q}^{r}$ "comes" from $F_{p} C_{p+q} / F_{p-1} C_{p+q}=C_{p q} q$, is any element in $E_{p . g}^{r}$ is some quotient of an element in Cp.g.

$$
\begin{aligned}
D\left(E_{p, q}^{r}\right) & \subseteq D\left(F_{p} C_{p+q}\right) \cap\left(F_{p-}+C_{p+q-1}\right) \quad / \sim \\
& \subseteq \operatorname{ker} D \cap\left(F_{p-r} C_{p+q-1}\right) \quad / \sim \\
& \left.\subseteq D^{-1}\left(F_{p-2 r} C_{n-1}\right) \cap\left(F_{p-r} C_{p+q-1}\right) / \sim \quad \text { (since } 0 \in F_{p-2 r} C_{n-1}\right)
\end{aligned}
$$

pass
to gotient
(

$$
\frac{\downarrow F_{p+r} C_{n-1} \cap D^{-1}\left(F_{p-2} C_{n-1}\right)}{\left[F_{p-2 r-1} C_{n} \cap D^{-1}\left(F_{p-2} C_{n-2}\right)\right]+\left[F_{p+1} C_{n-1} \cap D\left(F_{p-1} C_{n}\right)\right]}
$$

Hence, we have $d_{p, i}^{r}: E_{p, q}^{r} \rightarrow E_{p-r, q+r-1}^{r}$

Theorem: $\quad d^{r}$ is well-defined

- $E_{p, 8}^{0}=C_{p, g}$. $\quad d_{p, q}^{0} \cdot C_{p, q} \rightarrow C_{p, p-1}$ is the same as $d_{p . g}$

$$
\text { . } E_{p, g}^{\prime}=H_{p, q}(c, d) ; d_{p, g}^{\prime}: H_{p, g}(c, d) \rightarrow H_{p-1, q}(c, d)
$$

is induced by Sp.g.

$$
\begin{aligned}
& \cdot E_{p, q}^{2}=H_{p, q}\left(H_{x \cdot *}(c, d), \delta\right) . \\
& \cdot E_{p, q}^{r+1}=\operatorname{ker}\left(d_{p, q}^{\prime}\right) / \operatorname{Im}\left(d_{p+r, q-r+1}^{r}\right)
\end{aligned}
$$

- When $n>\max (p . f)$, then $E_{p, q}^{n}=E_{p, g}^{n+1}=: E_{p, g}^{\infty}$
- $E_{p, q}^{\infty}=F_{p} H_{p+q} / F_{p-1} H_{p+q}$.
proof: Homework. "

Let $p+q=n$. Then

$$
\begin{aligned}
& 0 \subseteq F_{0} H_{n} \subseteq F_{1} t_{h} \subseteq F_{2} H_{n} \subseteq \ldots \subseteq F_{n} H_{n}=H_{n}^{T o t} \\
& E_{0, n}^{\prime} \quad E_{1, n-1}^{\infty}{ }_{E_{2, n-2}}^{\infty} \cdots \cdots E_{n, 0}^{\prime}
\end{aligned}
$$

We say Epiq converges to $H^{T o t}$.

Recall that if $u \subseteq v \subseteq W$ are vector spaces, then

$$
\frac{v}{u} \oplus \frac{w}{v} \cong \frac{w}{u} .
$$

Hence, if all the Cpi's are vector spaces, then $H_{n}^{\text {tot }}=\overbrace{p+1}^{\oplus}=n=E_{p: g}^{\infty}$.

Redo everything with vertick filtration, we have:

Example: Snake lemma. Suppose we have the following
do $\downarrow \quad E_{p . q}^{0}=$

such that the rows are exact. Using ${ }^{v} F$; we have $E_{p q}^{1}=0=E_{p, 8}^{\infty}$. Hence $H_{n}^{\text {Tot }}=0$. Using ${ }^{H} F_{1}$ we have the following:

Since the second column is stabalize, and $E_{p, i f}^{\infty}=0$, so the second col. is zero.

Since the first x third column Stabalige at E^{3}, so the red arrow d^{2} are isomorphism.

Hence, we have a long exact sequence

$$
\begin{aligned}
& \rightarrow H^{n}(C) \xrightarrow{d^{\prime}} H^{n}(B) \xrightarrow{d^{\prime}} H^{n}(A) \xrightarrow{\text { connection }} \text { homomiphiom } H^{n-1}(c) \xrightarrow{d^{\prime}} H^{n-1}(B) \xrightarrow{d^{\prime}} \ldots \\
& \text { colter di,n} \stackrel{d^{2}}{=} \text { Kor } d_{2, n-1}^{\prime} d^{\prime} \lambda
\end{aligned}
$$

Theorem (Leery - Serve)
Let $F \hookrightarrow X \rightarrow B$ be a fibration (eg. a fibre bundle), $\pi_{1}(B)=0$. Then \exists a spectral sequence $E_{p, g}$ with horizontal filtration, such that it converges to $H_{0}(X)$, and $E_{p_{1}}^{2}=H_{p}\left(B ; H_{g}(F)\right)$.

Example: Computation of $H_{1}\left(\mathbb{C} \mathbb{P}^{n}\right)$. Let $S^{\prime} \rightarrow S^{2 n+1} \rightarrow C P^{n}$ be the
Hopf fibration. Then

$$
E_{p q}^{2}=\begin{array}{cccc}
8 & \vdots & \vdots & \vdots \\
H_{0}\left(C P^{n} ; H_{2} S^{\prime}\right) & H_{1}\left(C P^{n} ; H_{2} S^{\prime}\right) & H_{2}\left(G P^{n} ; H_{2} S^{\prime}\right) & \ldots \\
H_{0}\left(C P^{n} ; H_{1} S^{\prime}\right) & H_{1}\left(C P^{n} ; H_{1} S^{\prime}\right) & H_{2}\left(G P^{n} ; H_{1} S^{\prime}\right) & \ldots \\
H_{0}\left(C P^{n} ; H_{0} S^{\prime}\right) & H_{1}\left(C P^{n} ; H_{0} S^{\prime}\right) & H_{2}\left(G P^{n} ; H_{0} S^{\prime}\right) & \ldots p \\
0 & 1 & 2
\end{array}
$$

Since the only non-frivial d^{r} is the d^{2}, so

$$
E_{p, q}^{3}=E_{p, q}^{4}=\cdots=E_{p, q}^{\infty}, \text { converging to } H_{p+q}\left(S^{2 n+1}\right)
$$

Hence, $\quad H_{0}\left(G^{n} ; Z\right)=E_{0,0}^{\infty}=H_{0}\left(S^{2 n+1}\right)=\mathbb{Z}$

$$
H_{1}\left(\Delta p^{n} ; Z\right)=E_{1,0}^{\infty} \subseteq H_{1}\left(S^{2 n+1}\right)=0 .
$$

Since $H_{i}\left(S^{2 n+1}\right)=0$ except when $i=2 n+1$ m E Except when $p+q=2 n+1$.
\therefore Most of the d^{2} are isomorphism (when $p+q=m+1$) $\rightarrow H_{2 i-1}\left(\in P^{n} ; Z\right)=0$ and $H_{2 i}\left(6 p^{n} ; Z\right)=\mathbb{Z}$. $\quad i \leq n$. and $H_{i}\left(c \rho^{n} ; \mathbb{Q}\right)=0 \quad i>2 n+1$

When $p+q=2 n:$

From the picture, $E_{n, 1}^{2}$ stabalizes. So $E_{2 n, 1}^{\infty}=E_{2 n, 1}^{2}=\mathbb{Z}$.

Hence $\quad 0=F_{0} H_{2 n+1}=\ldots=F_{2 n-1} H_{2 n+1} \subseteq F_{2 n} H_{m+1} \subseteq H_{2 n+1}=\mathbb{Q}$ $\backslash_{E_{2 n, 1}} \backslash_{E_{2 n+1,0}}$
$\leadsto E_{2 n+100}^{\infty}=0$. So

$$
H_{2 n-1}\left(c p^{n}\right)=0<H_{2 n+1}\left(c p^{n}\right)
$$

is an isomophism mo $H_{2 n+1}\left(C_{P^{n}}^{n}\right)=0$.

$$
\therefore \quad H_{i}\left(\varangle P^{n}\right)= \begin{cases}0 & i \text { odd or } i>2 n \\ Z & i \text { even and } 0 \leq i \leq 2 n\end{cases}
$$

Sketch proof of the theorem: Suppose $F \subset \times H B$ is a fibre bundle. Let $\left\{U_{\alpha}\right\}$ be a good corer of B, le. any finite intersection of U_{α} is either empty or contractible.

By choosing a finer good cover, suppose $p^{-1}\left(u_{\alpha}\right) \cong u_{\alpha} \times F$.
Let $\quad C_{p, q}=\check{C}_{p}\left(\left\{u_{\alpha}\right\} ; C_{q}^{\text {sing }}\left(p^{-1}\left(u_{\alpha}\right)\right)\right)$
By Mayer-Vietris, if we we vertide filtration, we have

$$
E_{p, q}^{1}= \begin{cases}0 & \text { if } p \neq 0 \\ C_{q}^{\operatorname{sing}}(B) & \text { if } p=0\end{cases}
$$

Hence, Epis converges to $H_{0}(B)$. Then, wing horizontal filtration, we have

$$
\begin{aligned}
E_{p q}^{1} & =\check{C}_{p}\left(\left\{u_{\alpha}\right\} ; H_{q}(F)\right) \\
E_{p, q}^{2} & =\check{H}_{p}\left(\left\{u_{\alpha}\right\} ; H_{q}(F)\right) \\
& =H_{p}\left(B ; H_{p}(F)\right) .
\end{aligned}
$$

The coefficient $H q(F)$ might be twisted no requires $\pi_{1}(B)=0$

