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Notes on Rasmussen’s Proof of Milnor’s Conjecture

From last time we have

Definition. A cobordism between links L0, L1 is a smooth surface W ⊆ S3×[0, 1] with W |S3×{0} =
L0 and W |S3×{1} = L1 and boundary ∂W = L0 ∪ L1.

We also recall the following:

• We may decompose a cobordism W into a series of elementary cobordisms corresponding to
Reidemeister moves and Morse moves.

• A cobordism W induces a map ΦW : HLee(L0)→ HLee(L1)

• Two cobordisms are equivalent if we can relate them by a series of ”movie moves”. Theorem
from last week: ΦW is well-defined.

We will show that for knots ΦW is an isomorphism, but first we introduce a related notion:

Definition. Two links L0, L1 are concordant if there exists an embedding f : L0×[0, 1]→ S3×[0, 1]
such that f(L0 × {i}) = Li × {i} for i ∈ [0, 1]. A knot K is called slice if K is concordant to the
unknot.

More intuitively: Imprecisely: equivalent to saying that there exists a cobordism of genus 0 between
L0 and L1 or L0 and L1 are connected by a cylinder in S3 × [0, 1] with boundary components Li.
With this formulation, a knot K is slice if it bounds a disk in B4 (see example).

Fact: Concordance gives an equivalence relation on knots by setting K1 ∼ K2 if K1#K2 is slice.
The set of knots modulo this relation forms an abelian group with the connect sum operation. This
group is called the concordance group of knots in S3 and is denoted Conc(S3).

Definition. The slice genus of a knot, K is the minimum genus g of a connected, orientable surface
S (smoothly) embedded in B4 that has K as a boundary.

In general, slice genus is difficult to compute. Lisa Piccirillo’s proof that the Conway knot is not
slice completed the classification of slice knots under 13 crossings only 2 years ago.

The following theorem provides a lower bound on slice genus

Theorem 1.
|s(K)| ≤ 2g∗(K) ≤ 2g(K)

where g∗(K) denotes the slice genus.

To prove this theorem, we need to examine how the canonical generators of HLee behave under
cobordism.

Proposition. Let W be a weakly connected cobordism from L0 to L1. Then ΦW (zo0) is a nonzero
multiple of zo1 where zoi denotes a canonical generator of HLee(Li) labeled by orientation o on Li.

Definition. A cobordism W is weakly connected if all components of W have a boundary compo-
nent in L0.

The following corollary follows immediately from this proposition:

Corollary. If W is a connected cobordism between knots, then ΦW is an isomorphism.
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Proof. (of proposition) A cobordism W between two links L1 and L2 induces a morphism ΦW on
the Lee homology as follows:

For W = W1 ∪ · · · ∪Wk, with corresponding links Li, define ΦW = ΦW1 ◦ · · · ◦ΦWk
, where for each

i, ΦWi : HLee(Li)→ HLee(Li+1). We can then prove the proposition by induction on i. If Wi is an
elementary cobordism corresponding to a Reidemeister move, we have (from our earlier discussion
of Lee homology) a filtered map (of q-degree zero) ρ∗ sending canonical generators to canonical
generators. Therefore, it suffices to check that the proposition holds for an elementary cobordism
corresponding to attaching a handle. For such Wi we apply ι′,m′/∆′, or ε′ at each vertex of our
cube of resolutions for 0, 1, and 2-handle moves respectively. Whether we apply m′ or ∆′ depends
on whether the 1-handle merges circles or splits circles at each vertex of the cube of resolutions
(see example).

Divide the components of Wi into two sets:
Components of the 1st type have a boundary component in L0

Components of the 2nd type have no boundary component in L0

We call an orientation o on Wi permissible if it agrees with the orientation on S on components of
the first type.

We will prove the slightly stronger statement that

ΦWi(zo) =
∑
I

aIzoI

for permissible orientations I of Wi+1 arguing by induction on i.

• 0-handle: The generators of HLee of Li are given by zo ⊗ a, zo ⊗ b, zo ⊗ a and zo ⊗ b. The
map ΦW (zo) = ι(z0) = z0 ⊗ 1

2(a − b) is then a nonzero multiple of the two generators with
the appropriate orientation.

• 1-handle: If OI agrees with oi then the two strands involved in the 1-handle move have
opposite orientations, hence are both labeled a or both labeled b. We have

m(a⊗ a) = 2a ∆(a) = a⊗ a
m(b⊗ b) = −2b ∆(b) = b⊗ b

So in this case, ΦWi(zoi) is a nonzero multiple of zoI .

If oI is not compatible with oi then we have two strands pointing in the same direction with
different labels, so ΦWi(zoi) = 0 because m(a⊗ b) = m(b⊗a) = 0. From our discussion of Lee
homology before, we know that we cannot split a circle into two circles with opposite labels,
so we do not need to consider ∆′ for this subcase.

To complete the argument, we need to examine how the orientations behave under ΦWi . If
attaching the 1-handle adds a component to Li, then the number and type of components is
the same, so the set of permissible orientations is preserved (naturally identified) If we merge
two components, then we have three cases:

– The merge only involves one component of Wi

– The merge involves two components of Wi of the first type

– The merge involves two components, one of which is of the second type
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In the first two cases, the set of permissible orientations is preserved, as above. In the third
case, the set of permissible orientations is halved, but we still preserve canonical generators.

• 2-handle: an orientation on Wi uniquely extends to an orientation on Wi+1. Then ε(a) =
ε(b) = 1 implies that ΦW (zoi) = zoi+1

Note that here, we might have two different orientations on Wi+1 inducing two different
orientations on Li+1. But this can only happen when we have our two-handle capping a
closed component and this violates the weakly connected hypothesis.

(See example)

Important note: We can compute the filtered q−degree of elementary cobordisms corresponding to
handle attaching maps using our formula

q grading = degreeA − |v| −#circles− n+ − 2n−.

In our example, everything is preserved, except n+, which decreases by 1. This holds in general
and the degree of a 1-handle attaching is 1.

For 0-handle maps, we add a circle and everything else is preserved, so the q grading is -1. For
2−handle maps, we add a delete a circle, but degreeA decreases by 2 because we remove an x from
the tensor product, so the q grading is −1 again. The filtered degree of an elementary cobordism
corresponding to a handle attaching move is then the (negative) Euler characteristic, so the degree
of the map ΦW with our sign convention is

−χ(W ) = −(2− 2g − 2) = 2g = −#0-handles + #1-handles −#2-handles.

Now we wish to use ΦW to get a relationship between s(K) and slice genus of K in order to prove
theorem 1.

Proof. (of Theorem 1) Let K be a knot with slice genus g∗(K) = g. Consider x 6= 0 with minimal
grading in HLee(K). We then have a cobordism W of genus g from K to the unknot U . By our
corollary above, the induced map ΦW is an isomorphism with smin(ΦW (x)) ≥ −1 = smin(U) (recall
that for the unknot, s(U) = 0 and smin(U) = −1. Since the q−degree of ΦW is also 2g, we have
s(x) ≥ −2g − 1 since ΦW could have added at most 2g to the q−degree of x. We chose x to have
minimal grading, so smin(K) ≥ −2g− 1. Hence, s(K) ≥ −2g. The bound on s(K) follows from the
fact that s(K) = −s(K)

Corollary. For a positive knot K, s(K) = g∗(K) = g(K).

Proof. Last time we showed g(k) ≤ s(K) since a surface given by Seifert’s algorithm has genus
s(K). With the inequality from the theorem above, we get the desired equality

Corollary. (Milnor conjecture) The slice genus of a (p, q)-torus knot is (p−1)(q−1)
2 .

Proof. The genus of the (p, q)-torus knot is known to be (p−1)(q−1)
2 . Since torus knots are positive,

the above corollary implies that g∗(K) = g(K).
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We also have a nice algebraic property of the s−invariant. It behaves nicely with respect to connect
sum and we have the following theorem:

Theorem 2. The map s induces a homomorphism from Conc(S3) to Z, where conc(S3) denotes
the concordance group of knots in S3

Proof. See properties of s(K) under connect sum for additivity (basic idea is that canonical gen-
erator of connect sum is tensor product of canonical generators of knots). To show that s(K)
is a well defined map, consider concordant knots K1 and K2. Then the connect sum is slice, so
0 = s(K1#K2) = s(K1)− s(K2) and thus, s(K1) = s(K2).

( Cor: Knots differing by a single crossing satisfy s(K−) ≤ s(K+) ≤ s(K−) + 1)
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