1. Solve the system of equations \(x \equiv 3 \mod 5, x \equiv 10 \mod 11 \).

Solution: Since \(\text{gcd}(5, 11) = 1 \), by Chinese Remainder Theorem the solution is unique modulo 55. To find this solution, we write all possible elements satisfying the second equation \(x \equiv 10 \mod 11 \):

| \(x \mod 55 \) | 10 | 21 | 32 | 43 | 54 |
| \(x \mod 5 \) | 0 | 1 | 2 | 3 | 4 |

So the solution is \(x = 43 \mod 55 \).

2. Is it possible to construct an injective homomorphism (a) from \(\mathbb{Z}_3 \) to \(\mathbb{Z}_4 \)? (b) From \(S_3 \) to \(S_4 \)?

Solution:
(a) No. Suppose \(\varphi : \mathbb{Z}_3 \to \mathbb{Z}_4 \) is a homomorphism, and \(\varphi(1) = a \). Then \(\varphi(2) = \varphi(1 + 1) = \varphi(1) + \varphi(1) = a + a = 2a \). Similarly \(\varphi(3) = 3a \), but 3 = 0 in \(\mathbb{Z}_4 \). So we get the equation \(\varphi(0) = 0 = \varphi(3) = 3a \), so \(3a = 0 \mod 4 \). Therefore \(a = 0 \mod 4 \), so any homomorphism from \(\mathbb{Z}_3 \) to \(\mathbb{Z}_4 \) sends every element to 0 and is not injective.

(b) Yes, we can extend any permutation \(f \) of three elements to a permutation of 4 elements by \(f(4) = 4 \). Clearly, this is a homomorphism and it is injective.

3. A finite group \(G \) contains an element \(x \) of order 10 and also an element \(y \) of order 6. What can be said about the order of \(G \)?

Solution: By Lagrange Theorem \(|G| \) is divisible by 10 and by 6, so it is divisible by \(\text{LCM}(10, 6) = 30 \).

4. Let \(\varphi : G_1 \to G_2 \) be a group homomorphism. Suppose that \(|G_1| = 18, |G_2| = 15 \) and that \(\varphi \) is not the trivial homomorphism. What is the order of the kernel?

Solution: By Counting formula we have \(|\text{Ker} \varphi| \cdot |\text{Im} \varphi| = |G_1| = 18 \) and by Lagrange Theorem \(|\text{Im} \varphi| \) divides \(|G_2| = 15 \). Therefore \(|\text{Im} \varphi| \) divides both 15 and 18, so it is either equal to 3 or to 1. Since \(\varphi \) is not trivial, we get \(|\text{Im} \varphi| = 3 \), and by Counting formula \(|\text{Ker} \varphi| = 6 \).