MAT 150A, Fall 2023
 Practice problems for Midterm 1

1. Decompose the product of permutations into non-intersecting cycles:

$$
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 6 & 1 & 3 & 2 & 5
\end{array}\right) \cdot\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 2 & 3 & 4 & 6 & 1
\end{array}\right)
$$

2. Consider the permutation:

$$
f=\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
7 & 5 & 2 & 8 & 3 & 4 & 1 & 10 & 6 & 9
\end{array}\right)
$$

(a) Decompose f into non-intersecting cycles;
(b) Compute the sign of f;
(c) Compute the order of f;
(d) Compute the inverse permutation f^{-1}.
3. Find permutations in S_{7} of orders $10,11,12$ or prove that there are none.
4. Is the set of even integers a subgroup of $(\mathbb{Z},+)$? The set of odd integers?
5. Find the orders of all elements in \mathbb{Z}_{6}.
6. Solve the equation $8 x=1 \bmod 11$.
7. Find the orders of all elements in \mathbb{Z}_{11}^{*} and prove that this group is cyclic.
8. Find all finite subgroups of \mathbb{R}^{*}. Hint: find all elements of finite order.
9. Give an example of a group G and two elements x, y in G such that

$$
\operatorname{Ord}(x y) \neq \operatorname{LCM}(\operatorname{Ord}(x), \operatorname{Ord}(y))
$$

$10^{* *}$. Give an example of a group G and two elements x, y in G such that x and y have finite orders, but $x y$ has infinite order.

