MAT 150A, Fall 2023 Practice problems for Midterm 2

1. Prove that every group with 4 elements has an element of order 2 .
2. Are the following matrices orthogonal? Do they preserve orientation? Describe the corresponding transformations geometrically.

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

3. Let A be the counterclockwise rotation of the plane by 90°, let B be the reflection in the line $\{x=y\}$. Present the transformation $A, B, A B, B A$ by matrices, describe $A B$ and $B A$ geometrically.
4. Are the following functions homomorphisms?
(a) $f: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}, f(x)=x+1$.
(b) $f: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}, f(x)=1 / x$
5. Prove that the groups \mathbb{Z}_{6} and S_{3} are not isomorphic.
6. Is it possible to construct a surjective homomorphism from a group with 6 elements to a group with (a) 7 elements (b) 5 elements (c) 3 elements? If yes, construct such a homomorphism. If no, explain why this is not possible. 7. Is it possible to construct an injective homomorphism from a group with 6 elements to a group with (a) 3 elements (b) 9 elements (c) 12 elements? If yes, construct such a homomorphism. If no, explain why this is not possible.
7. Solve the system of equations

$$
\begin{cases}x=3 & \bmod 5 \\ x=4 & \bmod 6 .\end{cases}
$$

9. Is there an element of order 2 in (a) $\left(\mathbb{Z}_{9},+\right)$? (b) $\left(\mathbb{Z}_{9}^{*}, \times\right)$ (c) $\left(\mathbb{Z}_{99},+\right)$? (d) $\left(\mathbb{Z}_{99}^{*}, \times\right)$?
10. If we label the diagonals in the square by 1 and 2 , every isometry of the square would permute them. This gives a homomorphism from D_{4} to S_{2}. Describe its kernel and image.
11*. Color alternate vertices of the regular 6 -gon in black and white. Every element of D_{6} either preserves all colors or changes all of them, this defines a homomorphism from D_{6} to S_{2}. Describe its kernel and image.
