1. Let G be a group of order 25. Prove that G has at least one subgroup of order 5, and that if it contains only one subgroup of order 5 then it is a cyclic group.

2. Is it possible to construct an injective homomorphism (a) from \mathbb{Z}_3 to \mathbb{Z}_4? (b) From S_3 to S_4?

3. A finite group G contains an element x of order 10 and also an element y of order 6. What can be said about the order of G?

4. Let $\varphi : G_1 \to G_2$ be a group homomorphism. Suppose that $|G_1| = 18, |G_2| = 15$ and that φ is not the trivial homomorphism. What is the order of the kernel?