MAT 150A, Fall 2023 Solutions to homework 2

- **1.** Let x, y, z and w be elements if a group G.
- a) Solve for y given that $xyz^{-1}w = 1$.
- b) Suppose that xyz = 1. Does it follow that yzx = 1? Does it follow that yxz = 1?

Solution: (a) Let us multiply by x^{-1} on the left:

$$x^{-1}xyz^{-1}w = x^{-1}, \ yz^{-1}w = x^{-1}.$$

Now multiply by w^{-1} on the right:

$$yz^{-1}ww^{-1} = yz^{-1} = x^{-1}w^{-1},$$

and multiply by z on the right:

$$yz^{-1}z = x^{-1}w^{-1}z.$$

Therefore $y = x^{-1}w^{-1}z$.

(b) Let us solve the equation xyz = 1 for z:

$$xyz = 1, \ z = y^{-1}x^{-1}xyz = y^{-1}x^{-1}.$$

Now

$$yzx = y \cdot y^{-1}x^{-1} \cdot x = 1.$$

On the other hand, $yxz \neq 1$ if $xz \neq zx$. For example, pick $x = (1 \ 2)$ and $y = (2 \ 3)$ in the group S_3 , then

$$z = y^{-1}x^{-1} = (2\ 3)(1\ 2) = (1\ 3\ 2),$$

$$yzx = (2\ 3)(1\ 3\ 2)(1\ 2) = e \text{ while } yxz = (2\ 3)(1\ 2)(1\ 3\ 2) = (1\ 2\ 3) \neq e$$

2. How many elements of order 2 does the symmetric group S_4 contain?

Solution: The order of a permutations is the least common multiple of the lengths of disjoint cycles in it. If the order is equal to 2, this means that all cycles have length 2. In S_4 , we have 6 transpositions (cycles of length 2), and 3 products of to disjoint transpositions ((1 2)(3 4), (1 4)(2 3) and (1 3)(2 4)). Therefore there are 9 permutations of order 2 in S_4 .

3. Find the order of the permutation

 $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 10 & 7 & 6 & 2 & 5 & 9 & 4 & 1 & 8 \end{pmatrix}$

Solution: We have

$$f = (1 \ 3 \ 7 \ 9)(2 \ 10 \ 8 \ 4 \ 6 \ 5)$$

The cycles in f have length 4 and 6, so the order of f equals LCM(4, 6) = 12.

4. Determine if the following subset H is a subgroup of G:

a) $G = (\mathbb{Z}, +)$ and H is the set of positive integers.

b) $G = (\mathbb{R}^*, \cdot)$ and H is the set of positive real numbers.

c) G is the set of invertible $n \times n$ matrices and H is the set of $n \times n$ matrices with determinant 1.

Solution

(a) No: 1 is in H while (-1) is not in H, so H is not closed under taking inverses.

(b) Yes: 1 > 0, so H contains the identity. If a, b > 0 then ab > 0, so H is closed under multiplication. If a > 0 then $a^{-1} = \frac{1}{a} > 0$, so H is closed under taking inverses. Therefore H is a subgroup of G.