MAT 150A, Fall 2023

Solutions to homework 3

1. (25 points) Let x and y be elements of a group G. Assume that each of the elements x, y and $x y$ has order 2 .
a)(15 points) Prove that $x y=y x$.

Solution: We have $x x=y y=1$ and $x y x y=1$. By multiplying the latter equation by x on the left and by y on the right we get

$$
x y=x(x y x y) y=(x x) y x(y y)=y x .
$$

b)(10 points) Prove that the set $H=\{1, x, y, x y\}$ is a subgroup of G.

Solution: Now we can check that H is a subgroup: it contains 1 and each element is its own inverse, so we just need to check that it is closed under multiplication. Since $x y=y x$, any two elements of H commute and we can write

$$
y x=x y, x(x y)=y=(x y) x, y(x y)=x=(x y) y
$$

2. (25 points) Prove that every integer is congruent to the sum of its decimal digits modulo 9 .

Solution: Suppose that a number N has digits a_{1}, \ldots, a_{k}, read from left to right. Then

$$
N=a_{1} \cdot 10^{k-1}+\ldots+a_{k-1} \cdot 10+a_{k} .
$$

Now $10=1 \bmod 9$, so $10^{i}=1^{i}=1 \bmod 9$ for all i, and

$$
N=a_{1} \cdot 1+\ldots+a_{k-1} \cdot 1+a_{k}=a_{1}+\ldots+a_{k} \quad \bmod 9
$$

3. (25 points) Solve the equation $2 x=5$ modulo 9 and modulo 6 .

Solution: We can make the following tables

$x \bmod 9$	0	1	2	3	4	5	6	7	8
$2 x \bmod 9$	0	2	4	6	8	1	3	5	7

Therefore the only solution for $2 x=5 \bmod 9$ is $x=7 \bmod 9$.
Similarly, modulo 6 we get

$x \bmod 9$	0	1	2	3	4	5
$2 x \bmod 9$	0	2	4	0	2	4

So there are no solutions to $2 x=5 \bmod 6$.
4. (25 points) Compute $2^{2021} \bmod 7$.

Solution: We have $2^{3}=1 \bmod 7$, so

$$
2^{k}= \begin{cases}2, & k=3 q+1 \\ 4, & k=3 q+2 \\ 1, & k=3 q\end{cases}
$$

Since $2021=3 \cdot 673+2$, we get

$$
2^{2021}=\left(2^{3}\right)^{673} \cdot 2^{2}=1^{673} \cdot 4=4 \bmod 7
$$

