MAT 150A, Fall 2023

Solutions to homework 4

1. (25 points) Let G be a group of order 25 . Prove that G has at least one subgroup of order 5 , and that if it contains only one subgroup of order 5 then it is a cyclic group.

Solution: Let x be an element of G. By Lagrange Theorem the order of x divides 25, so it could be equal to 1,5 or 25 . We have the following cases:
a) $\operatorname{Ord}(x)=1$, then $x=e$ is the identity element.
b) $\operatorname{Ord}(x)=25$, then G is cyclic and generated by x. It has a subgroup $\left\langle x^{5}\right\rangle=$ $\left\{1, x^{5}, x^{10}, x^{15}, x^{20}\right\}$ of order 5.
c) Order of every non-identity element equals 5 . Then each non-identity element generates a subgroup of order 5 . If $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ is one such subgroup and y is not contained in it then y generates another subgroup of order 5 . So we have more than one subgroup of order 5 .
2. (25 points) Is it possible to construct an injective homomorphism (a) from \mathbb{Z}_{3} to \mathbb{Z}_{4} ? (b) From S_{3} to S_{4} ?

Solution: (a) (15 points) (First solution) No. Assume that $\varphi: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{4}$ is an injective homomorphism, then $\operatorname{Im}(\varphi)$ is a subgroup \mathbb{Z}_{4} with 3 elements. By Lagrange Theorem the size of $\operatorname{Im}(\varphi)$ must divide $\left|\mathbb{Z}_{4}\right|=4$, contradiction.
(Second solution) Assume that $\varphi(1)=a$, then $\varphi(3)=\varphi(1+1+1)=\varphi(1)+\varphi(1)+$ $\varphi(1)=a+a+a=3 a$. But $\varphi(3)=\varphi(0)=0$, so $3 a=0$ in \mathbb{Z}_{4}. Since 3 and 4 are coprime, we get $a=0 \bmod 4$, contradiction.
(b) (10 points) Yes: given a permutation f in S_{3}, the permutation $\varphi(f)$ in S_{4} is defined by

$$
\varphi(f)(i)= \begin{cases}f(i) & i=1,2,3 \\ 4 & i=4\end{cases}
$$

so that $\varphi(f)$ fixes 4. Clearly, this is an injective homomorphism.
3. (25 points) A finite group G contains an element x of order 10 and also an element y of order 6 . What can be said about the order of G ?

Solution: By Lagrange Theorem the order of G is divisible by 10 and by 6 , so it is divisible by 30 .
4. (25 points) Let $\varphi: G_{1} \rightarrow G_{2}$ be a group homomorphism. Suppose that $\left|G_{1}\right|=$ $18,\left|G_{2}\right|=15$ and that φ is not the trivial homomorphism. What is the order of the kernel?

Solution: By Counting Formula $|\operatorname{Ker} \varphi| \cdot|\operatorname{Im} \varphi|=\left|G_{1}\right|=18$ and by Lagrange Theorem $|\operatorname{Im} \varphi|$ divides $\left|G_{2}\right|=15$. Therefore $|\operatorname{Im} \varphi|$ divides both 15 and 18 and it could be equal to 1 or 3 . Since φ is nontrivial, we get $|\operatorname{Im} \varphi|=3$ and $|\operatorname{Ker} \varphi|=6$.

