MAT 150A, Fall 2023

Solutions to homework 5

The first three problems are focused on the set U of matrices of the form $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$ where x is an arbitrary real number.

1. (25 points) Prove that U is a subgroup of $G L(2)$.

Solution: We check three axioms of a subgroup:

1) Closure:

$$
\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & x+y \\
0 & 1
\end{array}\right)
$$

2) Identity: $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, so $x=0$.
3) Inverse: $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{cc}1 & -x \\ 0 & 1\end{array}\right)$ is contained in U.
2. (25 points) Prove that the group U is isomorphic to $(\mathbb{R},+)$.

Solution: We construct a function $\varphi: \mathbb{R} \rightarrow U$ by the equation $\varphi(x)=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$. Clearly, it is a bijection. Furthermore,

$$
\varphi(x) \varphi(y)=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & x+y \\
0 & 1
\end{array}\right)=\varphi(x+y)
$$

so φ is a homomorphism. Since it is a bijection and a homomorphisms, it is an isomorphism.
3. (25 points) Is U a normal subgroup of $G L(2)$? Please explain your answer in detail.

Solution: No. Let $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $A=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$. Then $X^{-1}=X$ and

$$
X A X^{-1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & x
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right) .
$$

If $x \neq 0$, this is not in U, so $X A X^{-1}$ is not in U. Therefore U is not normal.
4. (25 points) Use Chinese Remainder Theorem to solve the system of equations

$$
x=3 \quad \bmod 5, x=4 \quad \bmod 11
$$

Solution: By Chinese Reminder Theorem, since $\operatorname{GCD}(5,11)=1$, the solution is unique $\bmod 55$. Now we can use the first equation $x=3 \bmod 5$ and write all possible $x \bmod 55$ in the table:

$$
\begin{array}{ll|l|l|c|c|c|c|c|c|c|c|c}
x \bmod 55 & 3 & 8 & 13 & 18 & 23 & 28 & 33 & 38 & 43 & 48 & 53 \\
\hline x \bmod 11 & 3 & 8 & 2 & 7 & 1 & 6 & 0 & 5 & 10 & 4 & 9
\end{array}
$$

Therefore $x=48 \bmod 55$.

