MAT 150A, Fall 2023
Solutions to homework 6

1. (25 points) Are the following matrices orthogonal? If they are, describe them geometrically.
(a)(15 points) $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ (b) (10 points) $\left(\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2}\end{array}\right)$

Solution: a) We have

$$
A^{T} A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right) \neq I
$$

so A is not orthogonal.
b) We have

$$
\begin{aligned}
& B^{T} B=\left(\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{\sqrt{3}}{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{\sqrt{3}}{2}
\end{array}\right)= \\
& \left(\begin{array}{cc}
\frac{3}{4}+\frac{1}{4} & \frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4} \\
\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4} & \frac{1}{4}+\frac{3}{4}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I
\end{aligned}
$$

so B is orthogonal.
2. (25 points) Find all diagonal 3×3 matrices

$$
A=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right)
$$

which are orthogonal.
Solution: We have

$$
A^{T} A=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right)\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right)=\left(\begin{array}{ccc}
a^{2} & 0 & 0 \\
0 & b^{2} & 0 \\
0 & 0 & c^{2}
\end{array}\right)
$$

The matrix A is orthogonal if $a^{2}=b^{2}=c^{2}=1$, so $a, b, c \in\{-1,1\}$.
Recall that an orthogonal matrix A is called orientation reversing if $\operatorname{det}(A)=-1$ and orientation preserving if $\operatorname{det}(A)=1$.
3. (25 points) Find all 2×2 orientation reversing matrices of finite order.

Solution: Any orientation reversing 2×2 orthogonal matrix is a reflection and has order 2.
4. (25 points) Find all 2×2 orientation preserving matrices of finite order.

Solution: Any orientation reversing 2×2 orthogonal matrix is a rotation by some order φ. It has finite order n if $m \varphi=2 \pi n$ and $\varphi=\frac{2 \pi n}{m}$ for some integer n.

