MAT 150A, Fall 2023
Solutions to homework 6

1. (25 points) Are the following matrices orthogonal? If they are, describe them geometrically.

 (a) (15 points) \[
 \begin{pmatrix}
 1 & 1 \\
 1 & 1 \\
 \end{pmatrix}
 \]

 Solution: a) We have
 \[
 A^T A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \neq I
 \]
 so \(A \) is not orthogonal.

 (b) (10 points) \[
 \begin{pmatrix}
 \sqrt{3}/2 & 1/2 \\
 1 & -\sqrt{3}/2 \\
 \end{pmatrix}
 \]

 Solution: b) We have
 \[
 B^T B = \begin{pmatrix} \sqrt{3}/2 & 1/2 \\ 1 & -\sqrt{3}/2 \end{pmatrix} \begin{pmatrix} \sqrt{3}/2 & 1/2 \\ 1 & -\sqrt{3}/2 \end{pmatrix} =
 \begin{pmatrix} 3/4 + 1/4 & \sqrt{3}/4 - \sqrt{3}/4 \\ \sqrt{3}/4 - \sqrt{3}/4 & 3/4 + 3/4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I
 \]
 so \(B \) is orthogonal.

2. (25 points) Find all diagonal \(3 \times 3 \) matrices
 \[
 A = \begin{pmatrix}
 a & 0 & 0 \\
 0 & b & 0 \\
 0 & 0 & c \\
 \end{pmatrix}
 \]
 which are orthogonal.

 Solution: We have
 \[
 A^T A = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} = \begin{pmatrix} a^2 & 0 & 0 \\ 0 & b^2 & 0 \\ 0 & 0 & c^2 \end{pmatrix}
 \]
 The matrix \(A \) is orthogonal if \(a^2 = b^2 = c^2 = 1 \), so \(a, b, c \in \{-1, 1\} \).

 Recall that an orthogonal matrix \(A \) is called \textbf{orientation reversing} if \(\det(A) = -1 \) and \textbf{orientation preserving} if \(\det(A) = 1 \).

3. (25 points) Find all \(2 \times 2 \) orientation reversing matrices of finite order.

 Solution: Any orientation reversing \(2 \times 2 \) orthogonal matrix is a reflection and has order 2.

4. (25 points) Find all \(2 \times 2 \) orientation preserving matrices of finite order.
Solution: Any orientation reversing 2×2 orthogonal matrix is a rotation by some order φ. It has finite order n if $m\varphi = 2\pi n$ and $\varphi = \frac{2\pi n}{m}$ for some integer n.