MAT 150A, Fall 2023

Solutions to homework 7

1. Recall that any isometry of the plane can be written as

$$
m(x)=A x+b
$$

where A is an orthogonal matrix and b is a fixed vector. Assume that $\operatorname{det}(A)=-1$, so m reverses orientation. Prove that m^{2} is a translation by some vector.

Solution 1: Since A is an orthogonal 2×2 matrix and $\operatorname{det} A=-1$, by classification theorem A is a reflection, therefore $A^{2}=I$. Therefore $m(m(x))=A(A x+b)+b=$ $A^{2} x+A b+b=x+A b+b$, so $m^{2}(x)$ is a translation by the vector $A b+b$.

Solution 2: By classification theorem m is either a reflection or a glide reflection. If m is a reflection then m^{2} is identity. If m is a glide reflection, it is a composition of reflection in some line ℓ, and translation by a vector b parallel to ℓ. Then m^{2} is a translation by $2 b$.

In problems 2-4, find all isometries of the following infinite patterns:
2. $\ldots \perp \perp \perp \perp \perp \perp$

Solution: Assume that all \perp are placed at the points $(n, 0)$ for integer n. Then we have the following isometries:

- Translation by $(m, 0)$ for any integer m
- Reflection in the vertical line $x=n$ for integer n
- Reflection in the vertical line $x=n+\frac{1}{2}$ for integer n (between two \perp)

3. $\ldots \triangleleft \triangleleft \triangleleft \triangleleft \triangleleft \triangleleft$

Solution: Assume that all \triangleleft are placed at the points $(n, 0)$ for integer n. Then we have the following isometries:

- Translation by $(m, 0)$ for any integer m
- Reflection in the horizontal line $y=0$
- Glide reflection: reflection in the horizontal line followed by a translation by $(m, 0)$ for any integer m.

4...$\triangleleft \triangleright \triangleleft \triangleright \quad \triangleright \quad \downarrow$

Solution: Assume that all \triangleleft are placed at the points $(2 n, 0)$ and \triangleright are placed at the points $(2 n+1,0)$ for integer n. Then we have the following isometries:

- Translation by $(2 m, 0)$ for any integer m
- Reflection in the horizontal line $y=0$
- Glide reflection: reflection in the horizontal line followed by a translation by $(m, 0)$ for any integer m.
- Reflection in the vertical line $x=n+\frac{1}{2}$ for all integer n (between $\triangleleft \quad \triangleright$ or between $\triangleright \quad \triangleleft)$
- Rotation by π around the point $\left(n+\frac{1}{2}, 0\right)$.

Note that rotation by π can be obtained as a composition of reflections in the vertical and in the horizontal lines in either order.

