1. Recall that any isometry of the plane can be written as

\[m(x) = Ax + b \]

where \(A \) is an orthogonal matrix and \(b \) is a fixed vector. Assume that \(\det(A) = -1 \), so \(m \) reverses orientation. Prove that \(m^2 \) is a translation by some vector.

Solution 1: Since \(A \) is an orthogonal \(2 \times 2 \) matrix and \(\det A = -1 \), by classification theorem \(A \) is a reflection, therefore \(A^2 = I \). Therefore \(m(m(x)) = A(Ax + b) + b = A^2x + Ab + b = x + Ab + b \), so \(m^2(x) \) is a translation by the vector \(Ab + b \).

Solution 2: By classification theorem \(m \) is either a reflection or a glide reflection. If \(m \) is a reflection then \(m^2 \) is identity. If \(m \) is a glide reflection, it is a composition of reflection in some line \(\ell \), and translation by a vector \(b \) parallel to \(\ell \). Then \(m^2 \) is a translation by \(2b \).

In problems 2-4, find all isometries of the following infinite patterns:

2. \(\ldots \perp \perp \perp \perp \perp \perp \perp \ldots \)

Solution: Assume that all \(\perp \) are placed at the points \((n, 0)\) for integer \(n \). Then we have the following isometries:

- Translation by \((m, 0)\) for any integer \(m \)
- Reflection in the vertical line \(x = n \) for integer \(n \)
- Reflection in the vertical line \(x = n + \frac{1}{2} \) for integer \(n \) (between two \(\perp \))

3. \(\ldots \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \ldots \)

Solution: Assume that all \(\leftarrow \) are placed at the points \((n, 0)\) for integer \(n \). Then we have the following isometries:

- Translation by \((m, 0)\) for any integer \(m \)
- Reflection in the horizontal line \(y = 0 \)
- Glide reflection: reflection in the horizontal line followed by a translation by \((m, 0)\) for any integer \(m \).

4. \(\ldots \leftarrow \rightarrow \leftarrow \rightarrow \leftarrow \rightarrow \leftarrow \leftarrow \ldots \)

Solution: Assume that all \(\leftarrow \) are placed at the points \((2n, 0)\) and \(\rightarrow \) are placed at the points \((2n + 1, 0)\) for integer \(n \). Then we have the following isometries:

- Translation by \((2m, 0)\) for any integer \(m \)
- Reflection in the horizontal line \(y = 0 \)
- Glide reflection: reflection in the horizontal line followed by a translation by \((m, 0)\) for any integer \(m \).
- Reflection in the vertical line \(x = n + \frac{1}{2} \) for all integer \(n \) (between \(\leftarrow \rightarrow \) or between \(\rightarrow \leftarrow \))
- Rotation by \(\pi \) around the point \((n + \frac{1}{2}, 0)\).

Note that rotation by \(\pi \) can be obtained as a composition of reflections in the vertical and in the horizontal lines in either order.