MAT 150A, Fall 2023 Solutions to homework 7

1. Recall that any isometry of the plane can be written as

$$m(x) = Ax + b$$

where A is an orthogonal matrix and b is a fixed vector. Assume that det(A) = -1, so m reverses orientation. Prove that m^2 is a translation by some vector.

Solution 1: Since A is an orthogonal 2×2 matrix and det A = -1, by classification theorem A is a reflection, therefore $A^2 = I$. Therefore $m(m(x)) = A(Ax + b) + b = A^2x + Ab + b = x + Ab + b$, so $m^2(x)$ is a translation by the vector Ab + b.

Solution 2: By classification theorem m is either a reflection or a glide reflection. If m is a reflection then m^2 is identity. If m is a glide reflection, it is a composition of reflection in some line ℓ , and translation by a vector b parallel to ℓ . Then m^2 is a translation by 2b.

In problems 2-4, find all isometries of the following infinite patterns: **2.** ... $\perp \perp \perp \perp \perp \perp \perp \perp \perp \perp \ldots$

Solution: Assume that all \perp are placed at the points (n, 0) for integer n. Then we have the following isometries:

- Translation by (m, 0) for any integer m
- Reflection in the vertical line x = n for integer n
- Reflection in the vertical line $x = n + \frac{1}{2}$ for integer n (between two \perp)

 $3. \ldots \triangleleft \ \triangleleft \ \triangleleft \ \triangleleft \ \triangleleft \ \triangleleft \ \ldots$

Solution: Assume that all \triangleleft are placed at the points (n, 0) for integer n. Then we have the following isometries:

- Translation by (m, 0) for any integer m
- Reflection in the horizontal line y = 0
- Glide reflection: reflection in the horizontal line followed by a translation by (m, 0) for any integer m.

 $4. \ldots \triangleleft \quad \vartriangleright \quad \triangleleft \quad \vartriangleright \quad \triangleleft \quad \vartriangleright \quad \triangleleft \quad \vartriangleright \quad \triangleleft \quad \ldots$

Solution: Assume that all \triangleleft are placed at the points (2n, 0) and \triangleright are placed at the points (2n + 1, 0) for integer n. Then we have the following isometries:

- Translation by (2m, 0) for any integer m
- Reflection in the horizontal line y = 0
- Glide reflection: reflection in the horizontal line followed by a translation by (m, 0) for any integer m.
- Reflection in the vertical line $x = n + \frac{1}{2}$ for all integer n (between \triangleleft \triangleright or between \triangleright \triangleleft)
- Rotation by π around the point $(n + \frac{1}{2}, 0)$.

Note that rotation by π can be obtained as a composition of reflections in the vertical and in the horizontal lines in either order.