
LECTURE NOTES ON GALOIS THEORY

Abstract. This is a condensed summary of the results (mostly
without proofs) from Chapter 16 of Artin’s book.
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1.1. Splitting fields.

Definition 1. Let F be a field, and let f(x) be a polynomial with
coefficients in F . A splitting field for f(x) is a minimal field K such
that f(x) decomposes into linear factors in K.

Proposition 2. A splitting field always exists.

Proof. Let us decompose f(x) into irreducible factors over F : f(x) =
f1(x)f2(x) · · · fk(x). If all of them are linear, then F is the splitting
field for f(x). Otherwise, we can assume that f1(x) is not linear. Then
we can consider the field K1 = F [x]/(f1(x)), where f1(x) has a root
α. Then f1(x) = (x − α)g1(x), and f(x) has at least one (but maybe
more) linear factor over K1. If all irreducible factors over K1 are linear,
stop, otherwise there is an irreducible factor of degree at least 2, and
we can repeat the procedure and add its root. Since a polynomial of
degree n has at most n roots, the process will eventually stop and all
factors will be linear in some extension of F . �

One can prove that the splitting field is unique and does not depend
on the order in which we add roots of irreducible factors.

Example 3. Consider the polynomial f(x) = x2 + 1 over R. It is
irreducible, so the splitting field should contain R[

√
−1] = C. On the

other hand, in C we have f(x) = (x − i)(x + i), so C is the splitting
field for f(x).

Example 4. More generally, if a is not a square in F then F [
√
a] is

the splitting field for f(x) = x2 − a since x2 − a = (x−
√
a)(x +

√
a).

The degree of the splitting field over F equals 2.

Example 5. Let p be prime, consider the polynomial f(x) = xp − 1
over Q. Let ζ = e2πi/p, then ζ is a root of f(x) and we have

xp − 1 = (x− 1)(x− ζ)(x− ζ2) · · · (x− ζp−1),
1
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so all roots of f(x) belong to the extension Q(ζ). Since the minimal
polynomial for ζ equals xp−1 + . . .+ 1, we have [Q(ζ) : Q] = p− 1.

Example 6. Consider the polynomial f(x) = x3 +x+1 over Q. It has
no rational roots, so it is irreducible. Since f ′(x) = 3x2 + 1 > 0, f(x)
is increasing on the real line and has exactly one real root α. By the
Fundamental Theorem of Algebra, it has two complex roots β and β.
Consider the extension Q(α) ⊂ R, there we have f(x) = (x − α)g(x).
Since both roots of g(x) are not real, they do not belong to Q(α), so g(x)
is irreducible over Q(α). Then we can consider the field K = Q(α, β)
where f(x) factors completely. We have

[Q(α, β) : Q] = [Q(α, β) : Q(α)] · [Q(α) : Q] = 2 · 3 = 6.

1.2. Galois group.

Definition 7. Let K ⊃ F be a field extension. The Galois group of
K over F is the group of all automorphisms of K which preserve F .
The Galois group of a polynomial is defined as the Galois group of its
splitting field. It is denoted by G(K/F ).

Proposition 8. Let f(x) be a polynomial with coefficients in F which
has a root α ∈ K. For any φ ∈ G(K/F ) the image φ(α) is also a root
of f(x).

Proof. Indeed, suppose that f(x) = anx
n + . . .+ a1x+ a0 and ai ∈ F .

Then
f(φ(α)) = an(φ(α))n + . . .+ a1φ(α) + a0 =

φ(an)(φ(α))n + . . .+ φ(a1)φ(α) + φ(a0) =

φ(anα
n + . . .+ a1α + a0) = φ(f(α)) = φ(0) = 0.

�

Example 9. The complex conjugation has an automorphism of C
which preserves R (indeed, (z + w) = z + w, zw = zw). On the other
hand, if φ ∈ G(C/R) then φ(i)2+1 = 0, so φ(i) = i or φ(i) = −i. In the
first case for all x, y ∈ R one has φ(x+ iy) = φ(x) + φ(i)φ(y) = x+ iy,
so φ is identity automorphism, and in the second case φ(x + iy) =
φ(x) + φ(i)φ(y) = x − iy. Therefore G(C/R) ' Z2 and consists of
identity and the conjugation.

Example 10. More generally, suppose that a is not a square in F .
Then, similarly to the previous example, one can prove thatG(F [

√
a]/F )

has two automorphisms: identity and conjugation φ(x + y
√
a) = x −

y
√
a. If F has characteristic 2 then these automorphisms coincide and

the Galois group is trivial. Otherwise G(F [
√
a]/F ) ' Z2.
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Proposition 11. Let p be a prime number, then the Galois group of
f(x) = xp − 1 over Q is isomorphic to Zp−1.

Proof. As above, let ζ = e2πi/p, then Q(ζ) is the splitting field of f(x).
If φ ∈ G(Q(ζ)/Q) then by Proposition 8 φ(ζ) is also a root of f(x).
Since φ is a bijection and φ(1) = 1, φ(ζ) 6= 1. Therefore φ(ζ) = ζk, 1 ≤
k ≤ p − 1. Since Q(ζ) has a basis ζ i (i ≤ p − 2), this defines a map
φk : Q(ζ)→ Q(ζ) by φk(ζ

i) = ζ ik. More generally, we have φk(g(ζ)) =
g(ζk). Since the minimal polynomials of ζ and ζk are the same, the
fields Q(ζ) and Q(ζk) are isomorphic, so φk is an automorphism of
Q(ζ).

Therefore the Galois group has (p − 1) elements φ1, . . . , φp−1. Now
φk ◦ φm = φkm, so

G(Q(ζ)/Q) ' (Z×p , ·) ' (Zp−1,+).

�

Theorem 12. Let f(x) be an irreducible polynomial of degree n over a
field F of characteristic 0. Let K be the splitting field for f(x). Then
the following facts hold:

a) All roots of f(x) in K are distinct, we can denote them by x1, . . . , xn.
b) The Galois group G(K/F ) acts on the set {x1, . . . , xn} by permu-

tations.
c) An automorphism φ ∈ G(K/F ) is completely determined by its

values on the roots φ(x1), . . . , φ(xn), so G(K/F ) is isomorphic to a
subgroup of Sn.

d) The size of the Galois group equals the degree of the splitting field:
|G(K/F )| = [K : F ].

e) The action of G(K/F ) on the set of roots is transitive, that is,
has one orbit.

Example 13. Consider again the polynomial f(x) = x3+x+1 over Q.
As explained above, its splitting field K has degree 6, so |G(K/Q)| = 6.
On the other hand, G(K/Q) is a subgroup of S3 and |S3| = 6. Therefore
G(K/Q) = S3. This is the first example of a non-commutative Galois
group.

The following theorem is one of the most fundamental results in
Galois theory. Let K ⊃ L ⊃ F be a chain of field extensions. Any
automorphism of K preserving L is automatically preserving F , so
G(K/L) ⊂ G(K/F ).

Theorem 14. Let K be a splitting field of some irreducible polynomial
over F . If K ⊃ L ⊃ F then K is a splitting field (of some other
polynomial) over L and G(K/L) ⊂ G(K/F ). Conversely, for every
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subgroup H ⊂ G(K/F ) there is a unique intermediate field L such
that G(K/L) = H. This defines a bijective correspondence between the
subgroups of the Galois group G(K/F ) and intermediate fields L.

1.3. Construction of the 17-gon. In this section we use Galois the-
ory to prove the celebrated theorem of Gauss about the construction
of regular polygons with the straightedge and compass.

Theorem 15. Let p > 2 be a prime number. Then a regular p-gon can
be constructed using straightedge and compass if and only if p = 2n + 1
for some integer n.

Corollary 16. One can construct the 17-gon using straightedge and
compass since 17 = 24 + 1. On the other hand, it is impossible to
construct a 7-gon.

Proof. One can construct a regular p-gon if and only if the complex
number ζp = e2πi/p is constructible, or, equivalently, its real and imag-
inary parts cos(2π/p), sin(2π/p) are constructible.

Recall (see section 15.5 of the book for details) that a number α is
constructible if and only if there is a chain of fields

Q(α) = Fn ⊃ Fn−1 ⊃ . . . F2 ⊃ F1 = Q

such that [Fk : Fk−1] = 2 for all k.
Suppose that ζp is constructible, then the degree of the minimal

polynomial of ζp equals [Q(ζp) : Q] = 2 · · · 2 = 2n. On the other hand,
the minimal polynomial for ζp equals xp−1 + . . . + 1 and has degree
p− 1. Therefore p− 1 = 2n, and p = 2n + 1.

Conversely, suppose that p = 2n + 1, we need to construct a chain of
subfields:

Q(ζp) = Fn ⊃ Fn−1 ⊃ . . . F2 ⊃ F1 = Q.
By proposition 11 we have G(Q(ζp)/Q) = Zp−1 = Z2n . It has a chain
of subgroups

Z2n ⊃ Z2n−1 ⊃ . . .Z2.

By Main Theorem 14 there is a field Q(ζp) ⊃ F2 ⊃ Q such that
G(Q(ζp)/F2) = Z2n−1 and Q(ζp) is a splitting field over F2. This means
that [Q(ζp) : F2] = |G(Q(ζp)/F2)| = 2n−1, and

[F2 : Q] =
[Q(ζp) : Q]

[Q(ζp) : F2]
=

2n

2n−1
= 2.

By the same theorem, there is a field Q(ζp) ⊃ F3 ⊃ F2 such that
G(Q(ζp)/F3) = Z2n−2 and Q(ζp) is a splitting field over F3. This means
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that [Q(ζp) : F3] = |G(Q(ζp)/F3)| = 2n−2, and

[F3 : F2] =
[Q(ζp) : F2]

[Q(ζp) : F3]
=

2n−1

2n−2
= 2.

By continuing this procedure, we can construct the desired chain of
quadratic extensions. �

1.4. Solvable groups and solvable equations. We need to recall
the notion of the normal subgroup and of the quotient group.

Definition 17. A subgroup H ⊂ G is called normal, if for all g ∈ G
and h ∈ H one has ghg−1 ∈ H.

Recall that H ⊂ G defines two equivalence relations on G:

x ∼L y if x = yh for some h ∈ H,

x ∼R y if x = hy for some h ∈ H.

Theorem 18. Let H ⊂ G be a normal subgroup. Then x ∼L y if and
only if x ∼R y, and the set of equivalence classes for ∼ is a group. It
is called the quotient group G/H.

Proof. Suppose that x ∼L y, then x = yh for some h ∈ H. Since
yhy−1 = h′ ∈ H, we can write yh = h′y, so x = h′y ∼R y. Therefore
two equivalence relations coincide and we can denote them just by ∼.
Now suppose that x ∼ y and z ∼ w, then

x = yh, z = wh′′ ⇒ xz = yhwh′′ = ywh′h′′ ∼ yw,

where h′ = w−1hw, so hw = wh′. This means that the equivalence class
of the product of two elements depends only on the equivalence classes
of these elements, and the product of equivalence classes is defined
correctly. This defines the group structure on the set of equivalence
classes. �

For more details, see section 2.12 of the book.

Example 19. The subgroup An ⊂ Sn consisting of all even permuta-
tions is normal, since a conjugate of an even permutation is even. Odd
permutations and even permutations form two conjugacy classes, and
Sn/An ' Z2.

Definition 20. A group G is called solvable if there is a chain of
subgroups

G = H1 ⊃ H2 ⊃ H3 ⊃ . . . ⊃ Hn = e

such that Hk+1 is normal in Hk and Hk/Hk+1 is a cyclic group.
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Definition 21. A group G is called solvable if there is a chain of
subgroups

G = H1 ⊃ H2 ⊃ H3 ⊃ . . . ⊃ Hn = e

such that Hk+1 is normal in Hk and Hk/Hk+1 is abelian.

Proposition 22. For finite groups, definitions 20 and 21 are equiva-
lent.

Proof. Every cyclic group is abelian, so Definition 20 implies Definition
21. Conversely, suppose that there is a chain of subgroups such that
Hk/Hk+1 is abelian. By Fundamental Theorem of Abelian Groups one
can write

Hk/Hk+1 = Zn1 ⊕ . . .Znl

for some n1, . . . , nl (in fact, we can choose ni to be prime). Let p : Hk →
Hk/Hk+1 be the natural projection. Consider the chain of subgroups

Hk/Hk+1 ⊃ (Zn2 ⊕ . . .⊕ Znl
) ⊃ (Zn3 ⊕ . . .⊕ Znl

) ⊃ . . .Znl
,

since Hk/Hk+1 is abelian, all of them are normal. Now

Hk ⊃ p−1 (Zn2 ⊕ . . .⊕ Znl
) ⊃ p−1 (Zn3 ⊕ . . .⊕ Znl

) ⊃ . . . p−1(Znl
) ⊃ Hk+1

All these subgroups are normal in Hk and by the isomorphism theorem

Hk/p
−1 (Zn2 ⊕ . . .Znl

) ' Zn1 ,

p−1 (Zn2 ⊕ . . .⊕ Znl
) /p−1 (Zn3 ⊕ . . .⊕ Znl

) ' Zn2 , . . . ,

p−1(Znl
)/Hk+1 ' Znl

.

Therefore between each pair Hk ⊃ Hk+1 one can include a chain of nor-
mal subgroups so that all successive quotients are cyclic, and Definition
20 holds. �

Example 23. The group S3 has a chain of normal subgroups S3 ⊃
A3 ⊃ {e}. One has S3/A3 ' Z2, A3/{e} = A3 ' Z3, so S3 is solvable.

Example 24. The group S4 has a chain of normal subgroups S4 ⊃
A4 ⊃ K4 ⊃ {e}, where

K4 = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
By Example 19, S4/A4 ' Z2. The group A4/K4 has 12/4 = 3 elements
and hence is isomorphic to Z3. The group K4/{e} = K4 is abelian, in
fact, it is isomorphic to Z2 ⊕ Z2. Therefore S4 is solvable.

Proposition 25. A subgroup of a solvable group is solvable.

Definition 26. A group G is called simple, if it has no nontrivial
normal subgroups.

We will use the following fact from group theory without proof.
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Theorem 27. The group A5 is simple. The only nontrivial normal
subgroup of S5 is A5. As a consequence, S5 is not solvable.

The importance of solvable groups in Galois theory is emphasized by
the following theorem.

Theorem 28. A polynomial f(x) over a field F of characteristic zero
can be solved in radicals if and only if its Galois group is solvable.

Proposition 29. Every polynomial equation of degree at most 4 can
be solved in radicals.

The corresponding formulas were found by Cardano in degree 3 and
by Ferrari in degree 4, long before the Galois theory.

Proof. The Galois group of a degree 3 equation is a subgroup of S3, the
Galois group of a degree 4 equation is a subgroup of S4. Since both S3

and S4 are solvable and a subgroup of a solvable group is solvable, the
Galois groups of these equations are always solvable. By Theorem 28
the equations can be solved in radicals. �

Theorem 30. There are equations of degree 5 which cannot be solved
in radicals.

Proof. One can prove (see below) that there exists an equation of degree
5 with Galois group S5. Since S5 is not solvable, this equation cannot
be solved in radicals. �

The following example was not discussed in class, but we include it
for completeness.

Theorem 31. Let f(x) be an irreducible polynomial of degree 5 with
rational coefficients, which has exactly 3 real roots. Then the Galois
group of f(x) is isomorphic to S5.

Proof. Let K be the splitting field of f(x). The Galois group G(K/Q)
is a subgroup of S5. Since f(x) has exactly 3 real roots, it also has 2
complex conjugate roots. The complex conjugation is an automorphism
of K which preserves real roots and swaps complex ones, so it acts as
a transposition in S5.

Since the action of the Galois group on the roots is transitive, it
has an orbit of length 5. By the Orbit-Stabilizer formula, the order of
G(K/Q) is divisible by 5. By Sylow theorem, G(K/Q) must have an
element of order 5. Since G(K/Q) ⊂ S5, this element of order 5 must
be a 5 -cycle.

Therefore G(K/Q) contains both a transposition and a 5-cycle. One
can check that these two permutations generate S5, so G(K/Q) =
S5. �


