MAT 150C, Spring 2021
 Practice problems for Midterm 2

This practice sheet contains more problems than the actual exam.

1. Find the minimal polynomial for $\sqrt{2}+\sqrt{3}$ over \mathbb{Q}.
2. Find all irreducible polynomials over \mathbb{Z}_{2} of degrees (a) 1 (b) 2 (c) 3 (d) 4 .
3. Prove that the polynomial $x^{3}-3 x+1$ is irreducible over \mathbb{Q}.
4. Decompose the polynomial $x^{4}+1$ into irreducible factors over (a) $\mathbb{Q}(b)$ $\mathbb{Q}[\sqrt{2}](\mathrm{c}) \mathbb{Q}[i]$.
5. Compute $\frac{1}{1+\sqrt[3]{2}}$ in the field $\mathbb{Q}[\sqrt[3]{2}]$.
6. Let $\chi_{n}: S U(2) \rightarrow \mathbb{C}$ be the character of the $(n+1)$ dimensional irreducible representation V_{n}.
(a) Prove that $f(A)=\chi_{1}(A) \cdot \chi_{3}(A)$ can be written as a sum of χ_{i} with nonnegative integer coefficients.
(b) Construct a representation of $S U(2)$ with character $f(A)$.
7^{*}. Suppose that $p>2$ is a prime number, consider the field $F=\mathbb{Z}_{p}$.
(a) Consider the function $f: F \rightarrow F, f(x)=x^{2}$. Prove that every nonzero element has either 0 or 2 preimages.
(b) Use (a) to compute the number of complete squares in F
(c) Use (b) to prove that for some $a \in F$ the polynomial $x^{2}-a$ is irreducible.
(d) Prove that there exists a field with p^{2} elements.
