MAT 150C, Spring 2021 Practice problems for the final exam

This practice sheet contains more problems than the actual exam. Problem marked with stars are more complicated than others.

- **1.** The group S_3 acts on the set of all subsets of $\{1, 2, 3\}$.
- a) Compute the character of the corresponding representation of S_3 .
- b) Decompose it into irreducibles.
- **2.** Consider the square on the plane, let l_1 and l_2 be two lines perpendicular to the sides of the square.
- a) Prove that the group G generated by reflections in l_1 and l_2 is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- b) Compute the character table of G.
- c) Consider the action of G on the set of vertices of the square. Compute the character of the corresponding representation and decompose it into irreducibles.
- d) Consider the action of G on the set of sides of the square. Compute the character of the corresponding representation and decompose it into irreducibles.
- e) Consider the action of G on the set of diagonals of the square. Compute the character of the corresponding representation and decompose it into irreducibles.
- **3.** How many non-isomorphic (not necessary irreducible) representations of SU(2) of dimension (a) 3 (b) 4 are there?
- **4.** How many non-isomorphic (not necessary irreducible) representations of S_3 of dimension 3 are there?
- **5.** a) Let A be an $n \times n$ matrix with rational coefficients. Prove that all eigenvalues of A are algebraic over \mathbb{Q} .
- b) Give an example of a 3×3 matrix with rational coefficients such that its eigenvalues are not rational.

- c)** Prove that every algebraic number of degree n is an eigenvalue of some $n \times n$ matrix with rational coefficients.
- **6.** A complex number $\alpha = x + iy$ is algebraic over \mathbb{Q} .
- a) Prove that $\overline{\alpha} = x iy$ is algebraic.
- b) Prove that x and y are algebraic.
- 7. a) Compute the minimal polynomial m(x) for the algebraic number $\alpha = \sqrt{2} + \sqrt{3}$ over \mathbb{Q} .
- b) Find the degree $[\mathbb{Q}(\alpha):\mathbb{Q}]$.
- c) Prove that $\sqrt{2}, \sqrt{3} \in \mathbb{Q}(\alpha)$
- d) Prove that $\mathbb{Q}(\alpha)$ is the splitting field for m(x).
- e)** Compute the Galois group of m(x).
- **8.** a) Prove that the polynomial $x^2 2$ is irreducible over \mathbb{Z}_3 .
- b) Let $F = \mathbb{Z}_3(\alpha)$ where $\alpha^2 = 2$. Compute $(1 + \alpha)^{10}$ in F.
- c) Compute $1/(1+2\alpha)$ in F.
- d) Compute the Galois group of F over \mathbb{Z}_3 .
- e) Prove that the polynomial $x^2 + x + 2$ has two roots in F, but does not have a root in \mathbb{Z}_3 .
- **9.** Three points A, B, C belong to the same circle with center at O. Suppose the coordinates of A, B, C are constructible numbers. Prove that the coordinates of O and the radius of the circle are also constructible.