

MAT 150C, Spring 2021

Practice problems for the final exam

This practice sheet contains more problems than the actual exam. Problem marked with stars are more complicated than others.

- 1.** The group S_3 acts on the set of all subsets of $\{1, 2, 3\}$.
 - a) Compute the character of the corresponding representation of S_3 .
 - b) Decompose it into irreducibles.
- 2.** Consider the square on the plane, let l_1 and l_2 be two lines perpendicular to the sides of the square.
 - a) Prove that the group G generated by reflections in l_1 and l_2 is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.
 - b) Compute the character table of G .
 - c) Consider the action of G on the set of vertices of the square. Compute the character of the corresponding representation and decompose it into irreducibles.
 - d) Consider the action of G on the set of sides of the square. Compute the character of the corresponding representation and decompose it into irreducibles.
 - e) Consider the action of G on the set of diagonals of the square. Compute the character of the corresponding representation and decompose it into irreducibles.
- 3.** How many non-isomorphic (not necessary irreducible) representations of $SU(2)$ of dimension (a) 3 (b) 4 are there?
- 4.** How many non-isomorphic (not necessary irreducible) representations of S_3 of dimension 3 are there?
- 5.** a) Let A be an $n \times n$ matrix with rational coefficients. Prove that all eigenvalues of A are algebraic over \mathbb{Q} .
b) Give an example of a 3×3 matrix with rational coefficients such that its eigenvalues are not rational.

c)** Prove that every algebraic number of degree n is an eigenvalue of some $n \times n$ matrix with rational coefficients.

6. A complex number $\alpha = x + iy$ is algebraic over \mathbb{Q} .

- a) Prove that $\bar{\alpha} = x - iy$ is algebraic.
- b) Prove that x and y are algebraic.

7. a) Compute the minimal polynomial $m(x)$ for the algebraic number $\alpha = \sqrt{2} + \sqrt{3}$ over \mathbb{Q} .

- b) Find the degree $[\mathbb{Q}(\alpha) : \mathbb{Q}]$.
- c) Prove that $\sqrt{2}, \sqrt{3} \in \mathbb{Q}(\alpha)$
- d) Prove that $\mathbb{Q}(\alpha)$ is the splitting field for $m(x)$.

e)** Compute the Galois group of $m(x)$.

8. a) Prove that the polynomial $x^2 - 2$ is irreducible over \mathbb{Z}_3 .

- b) Let $F = \mathbb{Z}_3(\alpha)$ where $\alpha^2 = 2$. Compute $(1 + \alpha)^{10}$ in F .
- c) Compute $1/(1 + 2\alpha)$ in F .
- d) Compute the Galois group of F over \mathbb{Z}_3 .
- e) Prove that the polynomial $x^2 + x + 2$ has two roots in F , but does not have a root in \mathbb{Z}_3 .

9. Three points A, B, C belong to the same circle with center at O . Suppose the coordinates of A, B, C are constructible numbers. Prove that the coordinates of O and the radius of the circle are also constructible.