MAT 150C, Spring 2021
 Solutions to Homework 1

1. Consider the cyclic group $G_{n}=\left\langle x \mid x^{n}=1\right\rangle$.
a) (15 points) Describe all one-dimensional complex representations of G_{n}.
b) (15 points) Prove that every complex representation of G_{n} has a one-dimensional invariant subspace.

Solution: a) In a one-dimensional representation the image of x is a 1×1 invertible complex matrix, that is, a nonzero complex number a. Since $x^{n}=1$, we get $a^{n}=1$, so

$$
a=e^{\frac{2 \pi i k}{n}}=\cos \left(\frac{2 \pi k}{n}\right)+i \sin \left(\frac{2 \pi k}{n}\right)
$$

is a n-th root of unity. Here k is an arbitrary integer, but we can choose $k=0,1, \ldots, n-1$.

Given such a, we have $\rho(1)=1, \rho(x)=a, \rho\left(x^{2}\right)=a^{2}, \ldots, \rho\left(x^{n-1}\right)=$ a^{n-1}. Since $a^{n}=1$, this is a well-defined homomorphism from G to $G L(1)$.
b) Let $\rho: G \rightarrow G L(V)$ be a representation. Let v be an eigenvector for $\rho(x)$ with eigenvalue λ. Then

$$
\rho(x)(v)=\lambda v, \rho\left(x^{2}\right)(v)=\rho(x)(\rho(x)(v))=\rho(x)(\lambda v)=\lambda^{2} v
$$

and so on, hence $\rho\left(x^{k}\right)(v)=\lambda^{k} v$. Therefore v is a common eigenvector for all matrices $\rho\left(x^{k}\right)$, and spans a one-dimensional invariant subspace.
2. a) (15 points) Prove that there is a two-dimensional representation of G_{4} such that

$$
x \mapsto\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

b) (15 points) Find all invariant subspaces for the corresponding real representation.
c) (15 points) Find all invariant subspaces for the corresponding complex representation.

Solution: a) We have

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)^{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)^{4}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)^{2}=I .
$$

Therefore $\rho(x)^{4}=I$ and this is a well defined representation of the cyclic group of order 4.
b)c) Let us find the eigenvectors and eigenvalues for $\rho(x)$. The characteristic polynomial equals

$$
\operatorname{det}\left(\begin{array}{cc}
-\lambda & 1 \\
-1 & -\lambda
\end{array}\right)=\lambda^{2}+1
$$

so the eigenvalues are $\lambda_{1}=i$ and $\lambda_{2}=-i$. It is easy to see that the eigenvectors are $(1, i)$ and $(1,-i)$.

Since the eigenvectors are not real, the only real invariant subspaces in (b) are 0 and \mathbb{R}^{2}.

In (c), there are 4 invariant subspaces: $0, \mathbb{C}^{2}, \operatorname{span}(1, i), \operatorname{span}(1,-i)$.
3. (25 points) Consider the standard two-dimensional representation of the dihedral group D_{n}. For which n is this an irreducible complex representation.

Solution: Assume that this representation is not irreducible, then it has a 1-dimensional invariant subspace or, equivalently, a common eigenvector for all operators in D_{n}.

Observe that for a reflection in a line ℓ there are two eigenvectors: a vector along ℓ has eigenvalue 1 , and a vector perpendicular to ℓ has eigevalue (-1). If ℓ_{1} and ℓ_{2} are two distinct lines which are not perpendicular, then the corresponding reflections not have common eigenvectors and hence the representation is irreducible. For any $n \geq 3$ we can find such lines.

Alternatively, one can argue that the rotations have complex eigenvectors and reflections have real eigenvectors, so they do not have common eigenvectors as well.

