MAT 150C, Spring 2021
 Solutions to Homework 2

1. a) Prove that for odd n all reflections in the dihedral group D_{n} are conjugate to each other.
b) Prove that for even n there are exactly two conjugacy classes of reflections in D_{n}.

Solution: The composition of two reflections separated by angle φ is a rotation by angle 2φ. Suppose that ℓ_{1}, ℓ_{2} and ℓ_{3} are three lines such that the angles between ℓ_{1} and ℓ_{2}, and between ℓ_{2} and ℓ_{3} are equal to φ. Then the corresponding reflections satisfy the equation

$$
R_{\ell_{1}} R_{\ell_{2}}=R_{\ell_{2}} R_{\ell_{3}}, R_{\ell_{2}}^{-1} R_{\ell_{1}} R_{\ell_{2}}=R_{\ell_{3}} .
$$

Therefore the reflections in ℓ_{1} and ℓ_{2} are conjugate to each other, and the angle between ℓ_{1} and ℓ_{3} equals 2φ.

The minimal angle between two lines of reflection in the n-gon equals $\frac{2 \pi}{2 n}$, and by the above any two reflections separated by an angle $2 k \cdot \frac{2 \pi}{2 n}=\frac{2 \pi k}{n}$ are conjugate to each other. If n is odd, this means that all reflections are conjugate. If n is even, there are two classes of reflections: the ones in lines through a pair of opposite vertices, and the ones in lines through the middles of opposite sides. See figure for two conjugacy classes of reflections in D_{6} :

2. Use problem 1 to describe all 1-dimensional representations of D_{n}.

Solution 1: Let $\rho: D_{n} \rightarrow G L(1, \mathbb{C})$) be a 1-dimensional representation, and R_{ℓ} a reflection in D_{n}. We have $R_{\ell}^{2}=1$, so if $a=\rho\left(R_{\ell}\right)$ then $a^{2}=1$ and $a= \pm 1$.

If n is odd, then all reflections are conjugate to each other, and either all of them are sent to +1 , or all of them are sent to -1 . In both cases, all rotations are sent to 1 , and we get two different 1-dimensional representations.

If n is even, then there are two conjugacy classes of reflections, and each class is sent to ± 1. If both conjugacy classes are sent to +1 or both to -1 , all rotations are sent to 1 . If one conjugacy class is sent to +1 and another to -1 , then all rotations by even multiples of $\frac{2 \pi}{n}$ are sent to 1 , and all rotations by odd multiples of $\frac{2 \pi}{n}$ are sent to -1 . In total, there are 4 different 1 -dimensional representations.

Solution 2: We use the standard presentation D_{n} by generators and relations: $x^{n}=$ $1, y^{2}=1, y x=x^{-1} y$. Here x is a rotation and y is a reflection. Let $\rho(x)=a$ and $\rho(y)=b$, then

$$
a^{n}=1, b^{2}=1, a b=a^{-1} b,
$$

so $a=a^{-1}$ and $a^{2}=1$. We have $a= \pm 1$ and $b= \pm 1$. If n is odd and $a=-1$, then $a^{n} \neq 1$, so a must be equal to 1 while $b= \pm 1$. If n is even, we can have $a= \pm 1$ and $b= \pm 1$, so there are four possible cases.
3. Recall that the averaging operator for a representation $\rho: G \rightarrow G L(n)$ is defined as

$$
\operatorname{Av}_{G}=\frac{1}{|G|} \sum_{g \in G} \rho(g)
$$

Compute $\operatorname{Av}_{S_{3}}(v)$ where $v=\left(x_{1}, x_{2}, x_{3}\right)$ is a vector in the 3 -dimensional permutation representation of S_{3}.

Solution: We have
$\operatorname{Av}_{S_{3}}(v)=\frac{1}{6}\left[\left(x_{1}, x_{2}, x_{3}\right)+\left(x_{2}, x_{1}, x_{3}\right)+\left(x_{3}, x_{2}, x_{1}\right)+\left(x_{1}, x_{3}, x_{2}\right)+\left(x_{2}, x_{3}, x_{1}\right)+\left(x_{3}, x_{1}, x_{2}\right)\right]=$ $\frac{1}{6}\left(2 x_{1}+2 x_{2}+2 x_{3}, 2 x_{1}+2 x_{2}+2 x_{3}, 2 x_{1}+2 x_{2}+2 x_{3}\right)=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{x_{1}+x_{2}+x_{3}}{3}, \frac{x_{1}+x_{2}+x_{3}}{3}\right)$.
4. Prove that for any $n>1$ the sum of all complex roots of unity of degree n equals 0 . Hint: Use a one-dimensional representation of the cyclic group of order n.

Proof: Consider the cyclic group G_{n} with generator x of order n and its one-dimensional representation where

$$
\rho(x)=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}} .
$$

Then $\rho\left(x^{k}\right)=\rho(x)^{k}$ runs over all complex roots of unity of degree k.
Let us apply the averaging operator to the vector 1 :

$$
\begin{aligned}
\operatorname{Av}_{G_{n}}(1)= & \frac{1}{n}\left(\rho(1) \cdot 1+\rho(x) \cdot 1+\cdots+\rho\left(x^{n-1}\right) \cdot 1\right)= \\
& \frac{1}{n}\left(\rho(1)+\rho(x)+\cdots+\rho\left(x^{n-1}\right)\right) .
\end{aligned}
$$

Suppose that the sum of all complex roots of unity of degree n is not equal to 0 , then by a theorem from lecture $\operatorname{Av}_{G_{n}}(1)$ spans a 1 -dimensional G_{n}-invariant subspace of \mathbb{C} which is impossible (since the representation is irreducible). Contradiction, therefore the sum of roots of unity equals 0 .

