MAT 150C, Spring 2021 Solutions to homework 3

1. Compute the character of the 4 -dimensional permutation representation of S_{4}.

Solution: Recall that for any representation corresponding to a group action the character of an element g equals the number of fixed points of g. We have the following numbers of fixed points:

- The identity permutation has 4 fixed points
- A transposition (cycle of length 2) has 2 fixed points
- A cycle of length 3 has 1 fixed point
- A cycle of length 4 has no fixed points
- A product of two disjoint transpositions (like (1 2)(3 4)) has no fixed points.

2. The group D_{4} acts on the set of vertices of a square. Compute the character of the corresponding representation.

Solution: The group D_{4} has the following elements:

- Identity has 4 fixed vertices
- Rotation by $\pm \frac{\pi}{2}$ has no fixed vertices
- Rotation by π has no fixed vertices
- Reflection in a diagonal through opposite vertices (there are 2 such diagonals) has 2 fixed vertices
- Reflection in a diagonal through the middle of opposite edges (there are 2 such diagonals) has no fixed vertices

3. The group D_{6} acts on the set of diagonals in a hexagon. Compute the character of the corresponding representation.

Solution: The group D_{6} has the following elements:

- Identity has 9 fixed diagonals
- Rotation by $\pm \frac{2 \pi}{6}$ has no fixed diagonals
- Rotation by $\pm \frac{4 \pi}{6}$ has no fixed diagonals
- Rotation by π has 3 fixed (long) diagonals
- Reflection in a diagonal through opposite vertices (there are 3 such diagonals) has 3 fixed diagonals (see picture below)
- Reflection in a diagonal through the middle of opposite edges (there are 3 such diagonals) has 1 fixed diagonal (see picture below).

4. A representation of S_{3} has the following character:

1	(12)	(13)	(2 3)	(123)	(132)
17	-1	-1	-1	2	2

Decompose it into a direct sum of irreducible representations.
Solution: We have the following character table of S_{3}, the first three rows are characters of irreducible representations and the last row is the character of our unknown representation V :

	1	(1 2)	(13)	(2 3)	(123)	(13 2)
triv	1	1	1	1	1	1
sgn	1	-1	-1	-1	1	1
\mathbb{C}^{2}	2	0	0	0	-1	-1
V	17	-1	-1	-1	2	2

We have
$\left\langle\chi_{\text {triv }}, \chi_{V}\right\rangle=\frac{1}{6}(1 \cdot 17+1 \cdot(-1)+1 \cdot(-1)+1 \cdot(-1)+1 \cdot 2+1 \cdot 2)=\frac{18}{6}=3$,
$\left\langle\chi_{s g n}, \chi_{V}\right\rangle=\frac{1}{6}(1 \cdot 17+(-1) \cdot(-1)+(-1) \cdot(-1)+(-1) \cdot(-1)+1 \cdot 2+1 \cdot 2)=\frac{24}{6}=4$,
$\left\langle\chi_{\mathbb{C}^{2}}, \chi_{V}\right\rangle=\frac{1}{6}(2 \cdot 17+0 \cdot(-1)+0 \cdot(-1)+0 \cdot(-1)+(-1) \cdot 2+(-1) \cdot 2)=\frac{30}{6}=5$,
Therefore

$$
V=3(\text { triv }) \oplus 4(\mathrm{sgn}) \oplus 5\left(\mathbb{C}^{2}\right)
$$

