MAT 150C, Spring 2021
 Solutions to homework 4

1. Consider the permutation representation $S_{3} \rightarrow G L(V), V=\mathbb{C}^{3}$.
(a) Compute the dimension of the space of S_{3}-invariant transformations from V to V.
(b) Find an explicit basis in this space.

Solution: (a) The character of the permutation representation is given by the following table:

$$
\begin{array}{l|c|c|c|c|c|c|}
1 & \left(\begin{array}{ll}
1 & 2
\end{array}\right) & \left(\begin{array}{ll}
1 & 3
\end{array}\right) & \left(\begin{array}{ll}
2 & 3
\end{array}\right) & \left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) & \left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right) \\
\hline 3 & 1 & 1 & 1 & 0 & 0
\end{array}
$$

The dimension of the space of S_{3}-invariant linear transformations equals:

$$
(\chi, \chi)=\frac{1}{6}(3 \cdot 3+1 \cdot 1+1 \cdot 1+1 \cdot 1)=2 .
$$

(b) The permutation representation splits into irreducibles as $\mathbb{C}^{3}=U \oplus U^{\perp}$ where U is the copy of the trivial representation spanned by the vector $(1,1,1)$. By Schur's lemma, the space of S_{3}-invariant linear transformations is spanned by the projections to U and U^{\perp}. The projection to U is given by averaging

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{x_{1}+x_{2}+x_{3}}{3}, \frac{x_{1}+x_{2}+x_{3}}{3}\right)
$$

and the corresponding matrix is

$$
T_{1}=\left(\begin{array}{ccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right) .
$$

The projection to U^{\perp} is given by the matrix

$$
T_{2}=I-T_{1}=\left(\begin{array}{ccc}
\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}
\end{array}\right) .
$$

To sum up, the space of S_{3}-invariant linear transformations is spanned by T_{1} and T_{2}.
2. Prove that complex numbers with absolute value 1 have the form $\left\{e^{i \theta}, \theta \in \mathbb{R}\right\}$ and form a group.

Solution: A complex number with absolute value r and argument θ can be written as

$$
z=r(\cos (\theta)+i \sin (\theta))=r e^{i \theta} .
$$

For $r=1$ we get $z=e^{i \theta}$. Let us prove that these form a group. Indeed,

$$
1=e^{i \cdot 0}, e^{i \theta_{1}} \cdot e^{i \theta_{2}}=e^{i\left(\theta_{1}+\theta_{2}\right)},\left(e^{i \theta}\right)^{-1}=e^{i(-\theta)} .
$$

This set contains 1 and is closed under multiplication and taking inverses, so it is a group.
3. Find all continuous one-dimensional representations of the group from problem 2.

Solution: Since $e^{i \theta_{1}} \cdot e^{i \theta_{2}}=e^{i\left(\theta_{1}+\theta_{2}\right)}$, it is easy to see that $\rho: e^{i \theta} \mapsto e^{i k \theta}$ is a group homomorphism. Since $\rho\left(e^{2 \pi i}\right)=\rho(1)=1$, we get $e^{2 \pi i k}=1$, so k must be an integer.
4. The character of a representation of $S U(2)$ has the form

$$
\chi\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right)=\alpha^{-2}+3 \alpha^{-1}+2+3 \alpha+\alpha^{2} .
$$

Decompose this representation into irreducibles.

Solution: Recall that the characters of the irreducible representations V_{k} have the form:

$$
\chi\left(V_{0}\right)=1, \chi\left(V_{1}\right)=\alpha+\alpha^{-1}, \chi\left(V_{2}\right)=\alpha^{2}+1+\alpha^{-2} .
$$

Therefore
$\chi=\left(\alpha^{-2}+3 \alpha^{-1}+2+3 \alpha+\alpha^{2}\right)=\left(\alpha^{2}+1+\alpha^{-2}\right)+3\left(\alpha+\alpha^{-1}\right)+1=\chi\left(V_{2}\right)+3 \chi\left(V_{1}\right)+\chi\left(V_{0}\right)$, so our representation is isomorphic to $V_{2} \oplus 3 V_{1} \oplus V_{0}$.

