1. Solve the equation $x^{2}+3 x+1=0$ in the field $\mathbb{Z}_{11}$.

Solution: We can make the following table:

| $x$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x^{2}$ | 0 | 1 | 4 | 9 | 5 | 3 | 3 | 5 | 9 | 4 | 1 |
| $x^{2}+3 x+1$ | 1 | 5 | 0 | 8 | 7 | 8 | 0 | 5 | 1 | 10 | 10 |

We see that there are two roots $x=2$ and $x=6$ in $\mathbb{Z}_{11}$. Check:

$$
(x-2)(x-6)=x^{2}-8 x+12=x^{2}+3 x+1 \quad \bmod 11 .
$$

2. Solve the equation $(3+2 \sqrt{2}) x=1$ in the field $\mathbb{Q}[\sqrt{2}]$.

Solution 1: Let $x=a+b \sqrt{2}$, then

$$
(3+2 \sqrt{2})(a+b \sqrt{2})=(3 a+4 b)+(3 b+2 a) \sqrt{2},
$$

We get $3 a+4 b=1,3 b+2 a=0$, so $a=-\frac{3}{2} b$, and

$$
3 a+4 b=-\frac{9}{2} b+4 b=-\frac{1}{2} b=1, b=-2, a=3 .
$$

Therefore $x=3-2 \sqrt{2}$.
Solution 2: Recall that $(a+b \sqrt{2})(a-b \sqrt{2})=a^{2}-2 b^{2}$, so $(3+$ $2 \sqrt{2})(3-2 \sqrt{2})=9-4 \cdot 2=1$. Therefore $x=\frac{1}{3+2 \sqrt{2}}=3-2 \sqrt{2}$.
3. Decompose the polynomial $x^{3}-2$ into irreducible factors over the field $\mathbb{Z}_{5}$.

Solution: Let us find the roots of this polynomial:

| $x$ | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $x^{2}$ | 0 | 1 | 4 | 4 | 1 |
| $x^{3}$ | 0 | 1 | 3 | 2 | 4 |

Therefore $x=3$ is a single root of this polynomial in $\mathbb{Z}_{5}$. Let us divide it by $(x-3)$ :

$$
\begin{gathered}
x^{3}-2=x^{2}(x-3)+3 x^{2}-2=x^{2}(x-3)+3 x(x-3)+4 x-2= \\
x^{2}(x-3)+3 x(x-3)+4(x-3)=\left(x^{2}+3 x+4\right)(x-3) .
\end{gathered}
$$

The polynomial $x^{2}+3 x+4$ has no roots in $\mathbb{Z}_{5}$ (any such root would be a root of $x^{3}-2$ ), so it is irreducible.
4. Prove that the polynomial $x^{4}-2$ is irreducible over $\mathbb{Q}$.

Solution: Let us find the roots of this polynomial. We have $x^{4}=$ $2, x^{2}= \pm \sqrt{2}$, so there are four roots $\sqrt[4]{2},-\sqrt[4]{2}, i \sqrt[4]{2},-i \sqrt[4]{2}$ and

$$
x^{4}-2=(x-\sqrt[4]{2})(x+\sqrt[4]{2})(x-i \sqrt[4]{2})(x+i \sqrt[4]{2}) .
$$

Since all the roots are not rational, we cannot factor the polynomial as a product of degree 1 and degree 3 factors. Assume we can factor it as a product of degree 2 factors, then the roots should be grouped in pairs. One of the factors contains $(x-\sqrt[4]{2})$ and we have the following cases:

1) $(x-\sqrt[4]{2})(x+\sqrt[4]{2})=x^{2}-\sqrt{2}$
2) $(x-\sqrt[4]{2})(x-i \sqrt[4]{2})=x^{2}-(i+1) \sqrt[4]{2}+i \sqrt{2}$
3) $(x-\sqrt[4]{2})(x+i \sqrt[4]{2})=x^{2}-(-i+1) \sqrt[4]{2}-i \sqrt{2}$

In all these cases the coefficients of the degree 2 polynomial are not rational, contradiction. Therefore the original polynomial is irreducible.

