MAT 150C, Spring 2021 Solutions to Homework 6

1. Suppose that a is not a square in the field F. Prove that there is an automorphism σ of the field $F[\sqrt{a}]$ such that

$$\sigma(x+y\sqrt{a}) = x - y\sqrt{a}$$
 for all $x, y \in F$

Solution 1: Since $\sigma^2 = \text{id}$, σ is a bijection. Let us check that it preserves addition and multiplication: let $z_1 = x_1 + y_1\sqrt{a}$, $z_2 = x_2 + y_2\sqrt{a}$. Then

$$z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)\sqrt{a}, \ \sigma(z_1 + z_2) = (x_1 + x_2) - (y_1 + y_2)\sqrt{a},$$

$$\sigma(z_1) + \sigma(z_2) = (x_1 - y_1\sqrt{a}) + (x_2 - y_2\sqrt{a}) = \sigma(z_1 + z_2);$$

$$z_1z_2 = (x_1x_2 + ay_1y_2) + (x_1y_2 + x_2y_1)\sqrt{a}, \ \sigma(z_1z_2) = (x_1x_2 + ay_1y_2) - (x_1y_2 + x_2y_1)\sqrt{a},$$

$$\sigma(z_1)\sigma(z_2) = (x_1 - y_1\sqrt{a})(x_2 - y_2\sqrt{a}) =$$

$$(x_1x_2 + ay_1y_2) - (x_1y_2 + x_2y_1)\sqrt{a} = \sigma(z_1z_2).$$

Therefore

$$\sigma(z_1 + z_2) = \sigma(z_1) + \sigma(z_2), \ \sigma(z_1 z_2) = \sigma(z_1)\sigma(z_2)$$

and σ is an automorphism.

Solution 2: Observe that $F[\sqrt{a}]$ has a basis $1, \sqrt{a}$ over F and the multiplication is completely determined by the equation $\sqrt{a} \cdot \sqrt{a} = a$. Now $\sigma(1) = 1, \sigma(\sqrt{a}) = -\sqrt{a}$, so σ is an F-linear map which sends a basis to a basis, so it is a bijection. Since $\sigma(\sqrt{a})^2 = (-\sqrt{a})^2 = a = \sigma(a), \sigma$ preserves multiplication and it is an automorphism.

2. Suppose that $\sigma(z) = z$ for some $z \in F[\sqrt{a}]$ and σ as in Problem 1. Prove that z is an element of F.

Solution: Let $z = x + y\sqrt{a}$, then $x + y\sqrt{a} = x - y\sqrt{a}$ and y = 0 (here we assume that F is not of characteristic 2). Therefore $z = x \in F$.

3. Prove that $(2 - \sqrt{3})^n + (2 + \sqrt{3})^n$ is an integer for all *n*. *Hint: use the automorphism* σ of $\mathbb{Q}[\sqrt{3}]$ from Problems 1 and 2.

Solution: First, we can expand this sum and obtain some expression of the form $A + B\sqrt{3}$ where A and B are some integers. We need to prove that B = 0. Indeed, let σ be an automorphism of $\mathbb{Q}[\sqrt{3}]$ as above, then

$$\sigma(2 - \sqrt{3}) = 2 + \sqrt{3}, \ \sigma(2 + \sqrt{3}) = 2 - \sqrt{3},$$
$$\sigma\left((2 - \sqrt{3})^n\right) = (2 + \sqrt{3})^n, \ \sigma\left((2 + \sqrt{3})^n\right) = (2 - \sqrt{3})^n,$$

so $\sigma(A + B\sqrt{3}) = A + B\sqrt{3}$ and B = 0 by problem 2.

4. Prove that the distance between $(2 + \sqrt{3})^n$ and the nearest integer becomes arbitrary small for $n \to \infty$.

Solution: By problem 3 we have $(2 - \sqrt{3})^n + (2 + \sqrt{3})^n = A_n$ is an integer (depending on *n*). On the other hand, $0 < 2 - \sqrt{3} < 1$, so $(2 - \sqrt{3})^n$ becomes arbitrary small as *n* approaches 0. Therefore $(2 + \sqrt{3})^n$ becomes arbitrary close to A_n .