MAT 150C, Spring 2021
 Solutions to Homework 6

1. Suppose that a is not a square in the field F. Prove that there is an automorphism σ of the field $F[\sqrt{a}]$ such that

$$
\sigma(x+y \sqrt{a})=x-y \sqrt{a} \text { for all } x, y \in F
$$

Solution 1: Since $\sigma^{2}=\mathrm{id}, \sigma$ is a bijection. Let us check that it preserves addition and multiplication: let $z_{1}=x_{1}+y_{1} \sqrt{a}, z_{2}=x_{2}+y_{2} \sqrt{a}$. Then

$$
\begin{gathered}
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right) \sqrt{a}, \sigma\left(z_{1}+z_{2}\right)=\left(x_{1}+x_{2}\right)-\left(y_{1}+y_{2}\right) \sqrt{a}, \\
\sigma\left(z_{1}\right)+\sigma\left(z_{2}\right)=\left(x_{1}-y_{1} \sqrt{a}\right)+\left(x_{2}-y_{2} \sqrt{a}\right)=\sigma\left(z_{1}+z_{2}\right) ; \\
z_{1} z_{2}=\left(x_{1} x_{2}+a y_{1} y_{2}\right)+\left(x_{1} y_{2}+x_{2} y_{1}\right) \sqrt{a}, \sigma\left(z_{1} z_{2}\right)=\left(x_{1} x_{2}+a y_{1} y_{2}\right)-\left(x_{1} y_{2}+x_{2} y_{1}\right) \sqrt{a}, \\
\sigma\left(z_{1}\right) \sigma\left(z_{2}\right)=\left(x_{1}-y_{1} \sqrt{a}\right)\left(x_{2}-y_{2} \sqrt{a}\right)= \\
\left(x_{1} x_{2}+a y_{1} y_{2}\right)-\left(x_{1} y_{2}+x_{2} y_{1}\right) \sqrt{a}=\sigma\left(z_{1} z_{2}\right) .
\end{gathered}
$$

Therefore

$$
\sigma\left(z_{1}+z_{2}\right)=\sigma\left(z_{1}\right)+\sigma\left(z_{2}\right), \sigma\left(z_{1} z_{2}\right)=\sigma\left(z_{1}\right) \sigma\left(z_{2}\right)
$$

and σ is an automorphism.
Solution 2: Observe that $F[\sqrt{a}]$ has a basis $1, \sqrt{a}$ over F and the multiplication is completely determined by the equation $\sqrt{a} \cdot \sqrt{a}=a$. Now $\sigma(1)=1, \sigma(\sqrt{a})=-\sqrt{a}$, so σ is an F-linear map which sends a basis to a basis, so it is a bijection. Since $\sigma(\sqrt{a})^{2}=$ $(-\sqrt{a})^{2}=a=\sigma(a), \sigma$ preserves multiplication and it is an automorphism.
2. Suppose that $\sigma(z)=z$ for some $z \in F[\sqrt{a}]$ and σ as in Problem 1. Prove that z is an element of F.

Solution: Let $z=x+y \sqrt{a}$, then $x+y \sqrt{a}=x-y \sqrt{a}$ and $y=0$ (here we assume that F is not of characteristic 2). Therefore $z=x \in F$.
3. Prove that $(2-\sqrt{3})^{n}+(2+\sqrt{3})^{n}$ is an integer for all n. Hint: use the automorphism σ of $\mathbb{Q}[\sqrt{3}]$ from Problems 1 and 2 .

Solution: First, we can expand this sum and obtain some expression of the form $A+B \sqrt{3}$ where A and B are some integers. We need to prove that $B=0$. Indeed, let σ be an automorphism of $\mathbb{Q}[\sqrt{3}]$ as above, then

$$
\begin{gathered}
\sigma(2-\sqrt{3})=2+\sqrt{3}, \sigma(2+\sqrt{3})=2-\sqrt{3} \\
\sigma\left((2-\sqrt{3})^{n}\right)=(2+\sqrt{3})^{n}, \sigma\left((2+\sqrt{3})^{n}\right)=(2-\sqrt{3})^{n}
\end{gathered}
$$

so $\sigma(A+B \sqrt{3})=A+B \sqrt{3}$ and $B=0$ by problem 2 .
4. Prove that the distance between $(2+\sqrt{3})^{n}$ and the nearest integer becomes arbitrary small for $n \rightarrow \infty$.

Solution: By problem 3 we have $(2-\sqrt{3})^{n}+(2+\sqrt{3})^{n}=A_{n}$ is an integer (depending on n). On the other hand, $0<2-\sqrt{3}<1$, so $(2-\sqrt{3})^{n}$ becomes arbitrary small as n approaches 0 . Therefore $(2+\sqrt{3})^{n}$ becomes arbitrary close to A_{n}.

