1. Suppose that $\cos (\alpha)$ is a constructible number. Prove that $\sin (\alpha)$ is constructible.

Solution: We have $\sin (\alpha)=\sqrt{1-\cos ^{2}(\alpha)}$. Since $\cos (\alpha)$ is constructible, and the product of constructible numbers is constructible, we have that $\cos ^{2}(\alpha)$ and $1-\cos ^{2}(\alpha)$ are constructible. Since the square root of a constructible number is constructible, $\sin (\alpha)$ is also constructible.
2. Suppose that $\cos (\alpha)$ is a constructible number. Prove that $\cos (2 \alpha)$ and $\cos \left(\frac{\alpha}{2}\right)$ are constructible.

Solution: We have $\cos (2 \alpha)=2 \cos ^{2}(\alpha)-1$ and $\cos \left(\frac{\alpha}{2}\right)=\sqrt{\frac{1+\cos (\alpha)}{2}}$, so similarly to problem 1 these are constructible.
3. Let $z=e^{\frac{2 \pi i}{5}}$ be the fifth root of unity, and $x=\cos \left(\frac{2 \pi}{5}\right)$.
a) Prove that $z+z^{4}=2 x$, and $z^{2}+z^{3}=2\left(2 x^{2}-1\right)$.
b) Use the equation $1+z+z^{2}+z^{3}+z^{4}=0$ and part (a) to find an algebraic equation for x. Solve it and find an explicit formula for x.

Solution: a) We have $z=\cos \left(\frac{2 \pi}{5}\right)+i \sin \left(\frac{2 \pi}{5}\right)$ and

$$
z^{4}=\cos \left(\frac{8 \pi}{5}\right)+i \sin \left(\frac{8 \pi}{5}\right)=\cos \left(\frac{2 \pi}{5}\right)-i \sin \left(\frac{2 \pi}{5}\right)
$$

so $z+z^{4}=2 \cos \left(\frac{2 \pi}{5}\right)=2 x$. Similarly, $z^{2}+z^{3}=2 \cos \left(\frac{4 \pi}{5}\right)$ and by double angle formula we have

$$
\cos \left(\frac{4 \pi}{5}\right)=2 \cos ^{2}\left(\frac{2 \pi}{5}\right)-1=2 x^{2}-1
$$

b) We have
$0=1+z+z^{2}+z^{3}+z^{4}=1+\left(z+z^{4}\right)+\left(z^{2}+z^{3}\right)=1+2 x+2\left(2 x^{2}-1\right)=4 x^{2}+2 x-1$.
Therefore $x=\frac{-2 \pm \sqrt{20}}{8}=\frac{-1 \pm \sqrt{5}}{4}$. Since $x>0$, we get $x=\frac{-1+\sqrt{5}}{4}$.
4. Use problem 3 to construct a regular pentagon by ruler and compass.

Solution: By Problem 3 we have $x=\cos \left(\frac{2 \pi}{5}\right)=\frac{-1+\sqrt{5}}{4}$ is a constructible number, and we can construct a point $A=\left(\cos \left(\frac{2 \pi}{5}\right),\left(\sin \left(\frac{2 \pi}{5}\right)\right)\right.$. Together with $B=(1,0)$, these two points are vertices of a regular pentagon, and we can use compass to draw circles with radius $A B$ and construct all other vertices of the pentagon.

