MAT 17A, practice problems for the final exam

1. Compute the limits:
a) $\lim _{x \rightarrow 3} e^{1 / x}$
b) $\lim _{x \rightarrow 3} \ln (x-3)$
c) $\lim _{x \rightarrow 3} \frac{\ln (x-2)}{x-3}$
d) $\lim _{x \rightarrow \infty} \frac{8 x^{5}-7 x^{3}+9}{\left(3 x^{2}-1\right)\left(2 x^{3}-3\right)}$
e) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{3}}$
f) $\lim _{x \rightarrow 0} \frac{\arctan (x)-x}{x^{3}}$
2. Compute the derivatives of the following functions:
a) $f(x)=x \ln x-x$
b) $f(x)=e^{3 x^{2}}$
c) $f(x)=(x-1)^{5} \cos x$
d) $f(x)=\sin (\ln x)$
e) $f(x)=\frac{e^{3 x+2}}{\cos x+2}$
3. Find the minimal and maximal values of a function:
a) $f(x)=x^{2} e^{-x}$ on $[0,1]$
b) $f(x)=2 x^{3}-3 x^{2}+1$ on $[-1,2]$
c) $f(x)=\sin ^{2} x$ on $[0, \pi]$
d) $\frac{x}{1+x^{2}}$ on $[-2,2]$
4. Find the equation of the tangent line to the graph of $f(x)=\ln x$ at $x=5$.
5. For a given function:

- Find the domain
- Determine the equations of vertical and horizontal asymptotes
- Find the derivative and determine the intervals where the function is increasing/decreasing
- Find the second derivative and determine the intervals where the function is concave up/down, find inflection points
- Draw the graph using all the information above
a) $f(x)=2 x^{3}-3 x^{2}+1$
b) $f(x)=x e^{-x}$
c) $f(x)=\ln \left(x^{2}+1\right)$
d) $f(x)=\frac{x-1}{x+1}$

6. Consider the function

$$
f(x)= \begin{cases}x+1, & \text { if } x<-1 \\ x^{2}+a x+b, & \text { if } x \geq-1\end{cases}
$$

a) For which values of the parameters it is continuous?
b) For which values of the parameters it has a derivative at every point?
7. Consider the curve given by the equation $x^{2 / 3}+y^{2 / 3}=1$. Find y^{\prime} using implicit differentiation.
8. Consider the curve given by the equation $y^{2}=x^{3}-x$.
a) Find y^{\prime} using implicit differentiation.
b) Find the equation of the tangent line at the point $(2, \sqrt{6})$.
9. An open rectangular box with square base is to be made from 1 area unit of material. What dimensions will result in a box with the largest possible volume?
10. A TV set costs 100 . If its price is lowered by $a \%$, the sales would increase by $2 a \%$. Find the discount amount a which yields the maximal profit.

