MAT 17A, solutions to practice problems for the final exam

1. Compute the limit:
a) $\lim _{x \rightarrow 3} e^{1 / x}$

Answer: $e^{1 / 3}$.
b) $\lim _{x \rightarrow 3} \ln (x-3)$

Answer: $-\infty$.
c) $\lim _{x \rightarrow 3} \frac{\ln (x-2)}{x-3}$

Solution: As x approaches $3,(x-2)$ approaches 1 , so $\ln (x-2)$ approaches $\ln (1)=0$. Therefore we have a limit of the form $0 / 0$ and can apply the L'Hôpital's rule:

$$
\lim _{x \rightarrow 3} \frac{\ln (x-2)}{x-3}=\lim _{x \rightarrow 3} \frac{1 /(x-2)}{1}=1
$$

d) $\lim _{x \rightarrow \infty} \frac{8 x^{5}-7 x^{3}+9}{\left(3 x^{2}-1\right)\left(2 x^{3}-3\right)}$

Solution: Let us divide the top and the bottom of this fraction by x^{5} :

$$
\lim _{x \rightarrow \infty} \frac{8 x^{5}-7 x^{3}+9}{\left(3 x^{2}-1\right)\left(2 x^{3}-3\right)}=\lim _{x \rightarrow \infty} \frac{8-7 / x^{2}+9 / x^{5}}{\left(3-1 / x^{2}\right)\left(2-3 / x^{3}\right)}=\frac{8-0+0}{(3-0)(2-0)}=\frac{4}{3} .
$$

e) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{3}}$

Solution: As this is the limit of the type ∞ / ∞, we can apply the L'Hôpital's rule several times:

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{3}}=\lim _{x \rightarrow \infty} \frac{e^{x}}{3 x^{2}}=\lim _{x \rightarrow \infty} \frac{e^{x}}{6 x}=\lim _{x \rightarrow \infty} \frac{e^{x}}{6}=\infty
$$

f) $\lim _{x \rightarrow 0} \frac{\arctan (x)-x}{x^{3}}$

Solution: As this is the limit of the type $0 / 0$, we can apply the L'Hôpital's rule several times:

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{\arctan (x)-x}{x^{3}}=\lim _{x \rightarrow 0} \frac{1 /\left(1+x^{2}\right)-1}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{1-1-x^{2}}{3 x^{2}\left(1+x^{2}\right)}= \\
\lim _{x \rightarrow 0} \frac{-x^{2}}{3 x^{2}\left(1+x^{2}\right)}=\lim _{x \rightarrow 0} \frac{-1}{3\left(1+x^{2}\right)}=\frac{-1}{3} .
\end{gathered}
$$

2. Compute the derivative of the following functions:
a) $f(x)=x \ln x-x$

Answer: $\ln (x)$
b) $f(x)=e^{3 x^{2}}$

Answer: $6 x e^{3 x^{2}}$.
c) $f(x)=(x-1)^{5} \cos x$

Answer: $5(x-1)^{4} \cos x-(x-1)^{5} \sin x$.
d) $f(x)=\sin (\ln x)$

Answer: $\frac{\cos (\ln x)}{x}$.
e) $f(x)=\frac{e^{3 x+2}}{\cos x+2}$

Answer: $\frac{(3 \cos x+6+\sin x) e^{3 x+2}}{(\cos x+2)^{2}}$.
3. Find the minimal and maximal values of a function:
a) $f(x)=x^{2} e^{-x}$ on $[0,1]$

Solution: We have $f^{\prime}(x)=2 x e^{-x}-x^{2} e^{-x}=x(2-x) e^{-x}$, so $f^{\prime}(x)=0$ for $x=0$ and $x=2$. Since $x=2$ is not on the interval and $x=0$ is one of the endpoints, we just need to compute $f(0)=0$ with $f(1)=e^{-1}$. Therefore the minimal value is 0 and the maximal value is e^{-1}.
b) $f(x)=2 x^{3}-3 x^{2}+1$ on $[-1,2]$

Solution: We have $f^{\prime}(x)=6 x^{2}-6 x=6 x(x-1)$, so $f^{\prime}(x)=0$ for $x=0$ and $x=1$. We need to compute
$f(-1)=-2-3+1=-4, f(0)=1, f(1)=2-3+1=0, f(2)=16-12+1=5$.
Therefore the minimal value is (-4) and the maximal value is 5 .
c) $f(x)=\sin ^{2} x$ on $[0, \pi]$

Solution: We have $f^{\prime}(x)=2 \sin x \cos x$, so $f^{\prime}(x)=0$ when either $\sin x=$ 0 (so $x=\pi k$) or $\cos x=0$ (so $x=\pi / 2+\pi k$). On the interval $[0, \pi]$ we have 3 critical numbers $0, \pi / 2, \pi$ and both endpoints are among them. Therefore one needs to compute $f(0)=0, f(\pi / 2)=1, f(\pi)=0$, and the minimal and maximal values are 0 and 1 respectively.
d) $\frac{x}{1+x^{2}}$ on $[-2,2]$

Solution: We have $f^{\prime}(x)=\frac{1+x^{2}-x(2 x)}{\left(1+x^{2}\right)^{2}}=1-x^{2}\left(1+x^{2}\right)^{2}$, and the critical numbers are $x=1$ and $x=-1$. We have

$$
f(-2)=-2 / 5, \quad f(-1)=-1 / 2, \quad f(1)=1 / 2, \quad f(2)=2 / 5
$$

Since $1 / 2>2 / 5$, the minimal and maximal values are $-1 / 2$ and $1 / 2$ respectively.
4. Find the equation of the tangent line to the graph of $f(x)=\ln x$ at $x=5$.

Answer: $y=\frac{1}{5} x+(\ln 5-1)$.
5. For a given function:

- Find the domain
- Determine the equations of vertical and horizontal asymptotes
- Find the derivative and determine the intervals where the function is increasing/decreasing
- Find the second derivative and determine the intervals where the function is concave up/down, find inflection points
- Draw the graph using all the information above
a) $f(x)=2 x^{3}-3 x^{2}+1$

Solution: The function is defined everywhere, and there are no asymptotes. We have $f^{\prime}(x)=6 x^{2}-6 x=6 x(x-1)$, so the function is increasing for $x>1$ and $x<0$, and decreasing for $0<x<1$. Furthermore, $f^{\prime \prime}(x)=12 x-6$, so the function is concave up for $x>1 / 2$ and concave down for $x<1 / 2$, and it has an inflection point at $x=1 / 2$.

b) $f(x)=x e^{-x}$

Solution: The function is defined everywhere. To find the asymptotes, remark that at $x \rightarrow-\infty$ the function e^{-x} goes to infinity, so $\lim _{x \rightarrow-\infty} x e^{-x}=$ $-\infty$. To find the limit at $x \rightarrow+\infty$, let us use the L'Hôpital's rule:

$$
\lim _{x \rightarrow+\infty} x e^{-x}=\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}=\lim _{x \rightarrow+\infty} \frac{1}{e^{x}}=0
$$

Therefore the graph has a horizontal asymptote $y=0$ at $x \rightarrow+\infty$.
Now $f^{\prime}(x)=e^{-x}-x e^{-x}=(1-x) e^{-x}$, so the function increases for $x<1$ and decreases for $x>1$. Furthermore, $f^{\prime \prime}(x)=-e^{-x}-(1-x) e^{-x}=$ $(x-2) e^{-x}$, so the function has an inflection point at $x=2$.

c) $f(x)=\ln \left(x^{2}+1\right)$

Solution: Since $x^{2}+1 \geq 1$, the function is defined and nonnegative everywhere. As x approaches $\pm \infty, x^{2}+1 \rightarrow+\infty$, so $\ln \left(x^{2}+1\right) \rightarrow+\infty$, and there are no horizontal asymptotes.

Now $f^{\prime}(x)=\frac{2 x}{x^{2}+1}$, so the function decreases for $x<0$ and increases for $x>0$. Furthermore,

$$
f^{\prime \prime}(x)=\frac{2\left(x^{2}+1\right)-2 x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{2\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}}
$$

and the function has inflection points at $x= \pm 1$.

d) $f(x)=\frac{x-1}{x+1}$

Solution: The function is defined for $x \neq-1$, and has a vertical asymptote at $x=-1$. To find horizontal asymptotes, we have

$$
\lim _{x \rightarrow \infty} \frac{x-1}{x+1}=\lim _{x \rightarrow \infty} \frac{1-1 / x}{1+1 / x}=1
$$

Now $f^{\prime}(x)=\frac{x+1-(x-1)}{(x+1)^{2}}=\frac{2}{(x+1)^{2}}$, so the function increases on every interval where it is defined. Furtermore, $f^{\prime \prime}(x)=-4(x+1)^{3}$, so the function is concave down for $x>-1$ and concave up for $x<-1$.

6. Consider the function

$$
f(x)= \begin{cases}x+1, & \text { if } x<-1 \\ x^{2}+a x+b, & \text { if } x \geq-1\end{cases}
$$

a) For which values of the parameters it is continuous?

Solution: The function is continuous, if its limits from the left and from the right at $x=-1$ coincide:

$$
(-1)+1=(-1)^{2}+a(-1)+b \Leftrightarrow 0=1-a+b \Leftrightarrow b=a-1 .
$$

b) For which values of the parameters it has a derivative at every point?

Solution: The function clearly has a derivative for all $x \neq-1$, and it has derivative at $x=-1$ if it is continuous at this point (see (a)), and the derivatives from the left and from the right coincide: $1=2(-1)+a$, so $a=3$ and $b=2$.
7. Consider the curve given by the equation $x^{2 / 3}+y^{2 / 3}=1$. Find y^{\prime} using implicit differentiation and sketch this curve. (Note: assume that $x^{2 / 3}=\sqrt[3]{x^{2}}$ is defined for all x).

Answer: $y^{\prime}=-\frac{x^{-1 / 3}}{y^{-1 / 3}}=-\frac{y^{1 / 3}}{x^{1 / 3}}$.
8. Consider the curve given by the equation $y^{2}=x^{3}-x$.
a) Find y^{\prime} using implicit differentiation.
b) Find the equation of the tangent line at the point $(2, \sqrt{6})$.

Answer: a) $y^{\prime}=\frac{3 x^{2}-1}{2 y}$.
b) $y=\frac{11}{2 \sqrt{6}}(x-2)+\sqrt{6}$.
9. An open rectangular box with square base is to be made from 1 area unit of material. What dimensions will result in a box with the largest possible volume?

Solution: Let h be the height of the box and let x be the size of the base. Then the surface area equals $x^{2}+4 x h=1$, so

$$
h=\left(1-x^{2}\right) / 4 x .
$$

The volume then equals $V(x)=x^{2} h=x\left(1-x^{2}\right) / 4=\left(x-x^{3}\right) / 4$. We get $V^{\prime}(x)=\left(1-3 x^{2}\right) / 4$, so the maximal volume is at

$$
x=\frac{1}{\sqrt{3}}, h=\frac{1-1 / 3}{4 / \sqrt{3}}=\frac{2 \sqrt{3}}{12}=\frac{1}{2 \sqrt{3}} .
$$

10. A TV set costs $\$ 100$. If its price is lowered by $a \%$, the sales would increase by $2 a \%$. Find the discount amount a which yields the maximal profit.

Answer: 25\%

